sábado, 1 de marzo de 2014

Ahead of Print -Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013 - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013 - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC







Volume 20, Number 4—April 2014

Research

Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013

Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek, Jan F. Drexler, Doreen Muth, Berend-Jan Bosch, Ulrich Wernery, Marion P.G. Koopmans, Renate Wernery, and Christian DrostenComments to Author 
Author affiliations: University of Bonn Medical Centre, Bonn, Germany (B. Meyer, M.A. Müller, V.M. Corman, D. Ritz, S. Kallies, A. Siemens, J.F. Drexler, D. Muth, C. Drosten)National Institute for Public Health and the Environment, Bilthoven, the Netherlands. (C.B.E.M. Reusken, G.-J. Godeke, J. van Beek, M.P.G. Koopmans);Erasmus Medical Centre, Rotterdam, the Netherlands (C.B.E.M. Reusken, J.F. Drexler, M.P.G. Koopmans)EUROIMMUN AG, Lübeck, Germany (E. Lattwein)Utrecht University, Utrecht, the Netherlands (B.-J. Bosch)Central Veterinary Research Laboratory, Dubai, United Arab Emirates (U. Wernery, R. Wernery)

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein–specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV–neutralizing antibody titers > 1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen associated with severe respiratory symptoms and renal failure in infected patients (1,2). Globally, 156 laboratory-confirmed cases of infection with MERS-CoV, including 65 deaths, were reported as of early November 2013. All human cases were linked to the Arabian Peninsula (Saudi Arabia, Jordan, Oman, Qatar, Kuwait, and the United Arab Emirates). Imported cases were detected in countries in Europe and Africa (United Kingdom, Germany, Italy, France, and Tunisia) (3).
Transmission patterns, including the putative zoonotic source of the virus, remain unclear. Hypotheses include frequent zoonotic infections with limited subsequent human-to-human transmission chains and existence of a self-sustained epidemic in humans (4). A recent study found evidence to support the existence of epidemiologically unlinked cases in a large outbreak in the al-Hasa region, Saudi Arabia (5). It was speculated that zoonotic introductions of MERS-CoV from an unknown reservoir might occur at high rates, in addition to obvious human-to-human transmission.
Coronaviruses (CoV) are positive-sense RNA viruses. Viruses in the genera Alphacoronavirus andBetacoronavirus are associated with mammals and show a particularly high level of diversification in bats. Viruses in the genera Gammacoronavirus and Deltacoronavirus are mostly avian-associated viruses (6,7). MERS-CoV belongs to Betacoronavirus phylogenetic lineage C that, in addition to MERS-CoV, contains 2 distinct bat-associated CoV species (HKU4 and HKU5) (1,8).
Insectivorous bats of the family Vespertilionidae were recently shown to carry viruses that are probably conspecific with MERS-CoV (9). However, the limited rate of contact between humans and insectivorous bats makes a continuous and frequent acquisition of MERS-CoV from bats an unlikely scenario. In a manner similar to observations regarding severe acute respiratory syndrome CoV (SARS-CoV), an intermediate reservoir host might exist from which human infections are acquired. Dromedary camels from different regions in Africa and the Arabian Peninsula have been shown to have antibodies against MERS-CoV (10,11). Animals from the Arabian Peninsula had high neutralizing serum activities overall and reciprocal antibody titers ≤320–1,280, which support recent infection with MERS-CoV or a highly related virus. Thus, dromedary camels might serve as intermediate hosts. However, detailed serologic studies in countries with actual incidence of MERS-CoV infections in humans have not been conducted.
Serologic analysis of CoVs is challenging because of cross-reactivity between CoVs infecting the same host and the broad distribution of CoVs in diverse mammalian species (6,7,1214). Antibodies directed against some of the major antigens of different CoVs are known to cross-react in standard serologic assays (15,16). Potential cross-reactivity is a diagnostic challenge because camelids are known to be infected with bovine CoV (BCoV), a distinct betacoronavirus of phylogenetic lineage A unrelated to the MERS-CoV (17,18). As an additional challenge, camel immunoglobulins lack a light chain peptide, which affects specific physical properties, such as altered size and stability, compared with immunoglobulins of other mammals (19,20). The influence of this feature on serologic assays has not been thoroughly investigated. Thus, serologic assays should be applied with caution, and different assay formats should be tested concurrently.
We reported a 2-staged approach for MERS-CoV serologic analysis in humans (15,16). Expanding upon these studies, we used in the present study a recombinant MERS-CoV spike protein immunofluroescence assay (rIFA) augmented by a validated protein microarray (10,21), followed by MERS-CoV–specific neutralization assay, to screen 651 dromedary camel serum samples from the United Arabian Emirates. Cross-reactivity against clade A betacoronaviruses was assessed by using a immunofluorescence assay (IFA) and a BCoV-specific neutralization assay. Serum samples obtained in 2003 and 2013 were compared to obtain information for the time in which MERS-related CoV has been circulating in camels.


Acknowledgments

We thank Tobias Bleicker for providing excellent technical assistance.
The work was supported by a European research project on emerging diseases detection and response (EMPERIE; www.emperie.eu/emp/External Web Site Icon) (contract no. 223498) and ANTIGONE (contract no. 278976). C.D. has received infrastructural support from the German Centre for Infection Research, the German Ministry for Research and Education, and the German Research Council (grants 01KIO701 and DR 772/3-1).

References

  1. Zaki AMvan Boheemen SBestebroer TMOsterhaus ADFouchier RAIsolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med.2012;367:181420DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Drosten CSeilmaier MCorman VMHartmann WScheible GSack SClinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis2013;13:74551DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. World Health OrganizationMiddle East respiratory syndrome coronavirus (MERS-CoV)—update, 2013 [cited 2013 Dec 10].http://www.who.int/csr/don/2013_06_26/en/index.htmlExternal Web Site Icon
  4. Cauchemez SVan Kerkhove MDRiley SDonnelly CAFraser CFerguson NM.Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill2013;18:20503.PubMedExternal Web Site Icon
  5. Cotten MWatson SJKellam PAl-Rabeeah AAMakhdoom HQAssiri ATransmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet2013;382:19932002DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Woo PCLau SKLam CSLau CCTsang AKLau JHDiscovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol.2012;86:39954008DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Drexler JFGloza-Rausch FGlende JCorman VMMuth DGoettsche MGenomic characterization of SARS-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol.2010;84:1133649DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. van Boheemen Sde Graaf MLauber CBestebroer TMRaj VSZaki AMGenomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio2012;3:e0047312DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Ithete NLStoffberg SCorman VMCottontail VMRichards LRSchoeman MCClose relative of human middle East respiratory syndrome coronavirus in bat, South Africa.Emerg Infect Dis2013;19:16979DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Reusken CBHaagmans BLMuller MAGutierrez CGodeke GJMeyer BMiddle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis2013;13:85966DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Perera RAWang PGomaa MEl-Shesheny RKandeil ABagato OSeroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013.Euro Surveill2013;18:20574.PubMedExternal Web Site Icon
  12. Woo PCLau SKLi KSPoon RWWong BHTsoi HWMolecular diversity of coronaviruses in bats. Virology2006;351:1807DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Pfefferle SOppong SDrexler JFGloza-Rausch FIpsen ASeebens ADistant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis2009;15:137784DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Gloza-Rausch FIpsen ASeebens AGottsche MPanning MFelix Drexler JDetection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis2008;14:62631DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Buchholz UMuller MANitsche ASanewski AWevering NBauer-Balci TContact investigation of a case of human novel coronavirus infection treated in a German hospital, October–November 2012. Euro Surveill2013;18:20406.PubMedExternal Web Site Icon
  16. Aburizaiza ASMattes FMAzhar EIHassan AMMemish ZAMuth DInvestigation of anti–Middle East respiratory syndrome antibodies in blood donors and slaughtethouse workers in Jeddah and Makkah, Saudi Arabia, fall 2013. [Epub ahead of print]. J Infect Dis. 2013.External Web Site Icon
  17. Jin LCebra CKBaker RJMattson DECohen SAAlvarado DEAnalysis of the genome sequence of an alpaca coronavirus. Virology2007;365:198203DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. Wünschmann AFrank RPomeroy KKapil SEnteric coronavirus infection in a juvenile dromedary (Camelus dromedarius). J Vet Diagn Invest2002;14:4414DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. van der Linden RHFrenken LGde Geus BHarmsen MMRuuls RCStok WComparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta1999;1431:3746DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Hamers-Casterman CAtarhouch TMuyldermans SRobinson GHamers CSonga EB,Naturally occurring antibodies devoid of light chains. Nature1993;363:4468DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Reusken CMou HGodeke GJvan der Hoek LMeyer BMuller MASpecific serology for emerging human coronaviruses by protein microarray. Euro Surveill2013;18:20441 .PubMedExternal Web Site Icon
  22. FAOSTAT2013 [cited 2013 Dec16].http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QA/EExternal Web Site Icon
  23. CVRL26th annual report 2012. 2013 [cited 2013 Dec 16].http://www.cvrl.ae/%5Can%5Canrp%5C2012%5CANRP2012.pdf Adobe PDF fileExternal Web Site Icon
  24. Corman VMEckerle IBleicker TZaki ALandt OEschbach-Bludau MDetection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.Euro Surveill2012;17:20285.PubMedExternal Web Site Icon
  25. Annan ABaldwin HJCorman VMKlose SMOwusu MNkrumah EEHuman betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis2013;19:4569DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Corman VMMuller MCostabel UTimm JBinger TMeyer BAssays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill.2012;17:20334.PubMedExternal Web Site Icon
  27. de Souza Luna LKHeiser VRegamey NPanning MDrexler JFMulangu SGeneric detection of coronaviruses and differentiation at the prototype strain level by reverse transcription–PCR and nonfluorescent low-density microarray. J Clin Microbiol.2007;45:104952DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Gerna GCereda PMRevello MGCattaneo EBattaglia MGerna MTAntigenic and biological relationships between human coronavirus OC43 and neonatal calf diarrhoea coronavirus. J Gen Virol1981;54:91102DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Müller MARaj VSMuth DMeyer BKallies SSmits SLHuman coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. MBio2012;3:e0051512DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Raj VSMou HSmits SLDekkers DHMuller MADijkman RDipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature2013;495:2514DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Chan CMTse HWong SSWoo PCLau SKChen LExamination of seroprevalence of coronavirus HKU1 infection with S protein-based ELISA and neutralization assay against viral spike pseudotyped virus. J Clin Virol2009;45:5460DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Horzinek MCLutz HPedersen NCAntigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infect Immun.1982;37:114855.PubMedExternal Web Site Icon
  33. Hofmann HPyrc Kvan der Hoek LGeier MBerkhout BPohlmann SHuman coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A2005;102:798893DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Anthony SJOjeda-Flores RRico-Chavez ONavarrete-Macias IZambrana-Torrelio CM,Rostal MKCoronaviruses in bats from Mexico. J Gen Virol2013;94:102838DOIExternal Web Site IconPubMedExternal Web Site Icon
  35. Wacharapluesadee SSintunawa CKaewpom TKhongnomnan KOlival KJEpstein JH,Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg Infect Dis.2013;19:134951DOIExternal Web Site IconPubMedExternal Web Site Icon
  36. Drexler JFGloza-Rausch FGlende JCorman VMMuth DGoettsche MGenomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol2010;84:1133649DOIExternal Web Site IconPubMedExternal Web Site Icon
  37. Ge XYLi JLYang XLChmura AAZhu GEpstein JHIsolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature2013;503:5358DOIExternal Web Site IconPubMedExternal Web Site Icon

Figure

Tables

Suggested citation for this article: Meyer B, Müller MA, Corman VM, Reusken CBEM, Ritz D, Godeke G-D, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis [Internet]. 2014 Apr [date cited].http://dx.doi.org/10.3201/eid2004.131746External Web Site Icon
DOI: 10.3201/eid2004.131746

No hay comentarios:

Publicar un comentario