lunes, 3 de febrero de 2014

Ahead of Print -High-level Relatedness among Mycobacterium abscessus subsp. massiliense Strains from Widely Separated Outbreaks - Volume 20, Number 3—March 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -High-level Relatedness among Mycobacterium abscessus subsp. massiliense Strains from Widely Separated Outbreaks - Volume 20, Number 3—March 2014 - Emerging Infectious Disease journal - CDC





Volume 20, Number 3—March 2014

Research

High-level Relatedness among Mycobacterium abscessussubsp. massiliense Strains from Widely Separated Outbreaks

Hervé Tettelin, Rebecca M. Davidson, Sonia Agrawal, Moira L. Aitken, Shamira Shallom, Nabeeh A. Hasan, Michael Strong, Vinicius Calado Nogueira de Moura, Mary Ann De Groote, Rafael S. Duarte, Erin Hine, Sushma Parankush, Qi Su, Sean C. Daugherty, Claire M. Fraser, Barbara A. Brown-Elliott, Richard J. Wallace, Steven M. Holland, Elizabeth P. Sampaio, Kenneth N. Olivier, Mary Jackson, and Adrian M. ZelaznyComments to Author 
Author affiliations: University of Maryland School of Medicine, Baltimore, Maryland, USA (H. Tettelin, S. Agrawal, E. Hine, S. Parankush, Q. Su, S.C. Daugherty, C.M. Fraser)National Jewish Health, Denver, Colorado, USA (R.M. Davidson, N.A. Hasan, M. Strong)University of Washington, Seattle, Washington, USA (M.L. Aitken)National Institutes of Health, Bethesda, Maryland, USA (S. Shallom, S. M. Holland, E.P. Sampaio, K.N. Olivier, A.M. Zelazny);University of Colorado Denver, Aurora, Colorado, USA (N.A. Hasan, M. Strong)Colorado State University, Fort Collins, Colorado, USA (V. Calado Nogueira de Moura, M.A. De Groote, M. Jackson)Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (R.S. Duarte)University of Texas Health Northeast, Tyler, Texas, USA (B.A. Brown-Elliott, R.J. Wallace Jr.)

Abstract

Three recently sequenced strains isolated from patients during an outbreak ofMycobacterium abscessus subsp. massiliense infections at a cystic fibrosis center in the United States were compared with 6 strains from an outbreak at a cystic fibrosis center in the United Kingdom and worldwide strains. Strains from the 2 cystic fibrosis outbreaks showed high-level relatedness with each other and major-level relatedness with strains that caused soft tissue infections during an epidemic in Brazil. We identified unique single-nucleotide polymorphisms in cystic fibrosis and soft tissue outbreak strains, separate single-nucleotide polymorphisms only in cystic fibrosis outbreak strains, and unique genomic traits for each subset of isolates. Our findings highlight the necessity of identifying M. abscessusto the subspecies level and screening all cystic fibrosis isolates for relatedness to these outbreak strains. We propose 2 diagnostic strategies that use partial sequencing of rpoBand secA1 genes and a multilocus sequence typing protocol.
Nontuberculous mycobacteria (NTM) and, in particular, the Mycobacterium abscessus group are recognized as emerging respiratory pathogens among patients with cystic fibrosis. Reports from the United States, France, and Israel have shown that the M. abscessus group accounts for a major proportion of NTM infections in patients with cystic fibrosis; prevalence rates range from 16% to 48% (13).
Previous studies have indicated great diversity within M. abscessus group strains among cystic fibrosis patients, suggesting independent acquisitions of NTM from the environment (2,4). However, suspicion of patient-to-patient transmission arose with the recent report of an outbreak of respiratory infection with M. abscessus subsp. massiliense at a cystic fibrosis center in Seattle, Washington, USA (5). The index case-patient and 4 additional patients all had multidrug-resistant isolates with resistance to amikacin and clarithromycin. All 5 strains were indistinguishable by repetitive unit sequence–based PCR patterns and pulsed-field gel electrophoresis analysis, which led to initiation of whole-genome sequencing. In a separate, recent study, whole-genome sequencing and epidemiologic analysis provided strong support for patient-to-patient transmission in 2 clustered outbreaks of M. abscessus subsp. massiliense at the Papworth Hospital Cystic Fibrosis Centre (Cambridge, UK) (6). Isolates from both clusters showed resistance to clarithromycin, and isolates from one of the clusters also had mutations conferring resistance to amikacin.
The availability of whole-genome sequences from different M. abscessus subsp. massilienseoutbreaks, as well as unrelated strains, provides an unprecedented opportunity for multigenome comparisons. We conducted a genomic study of 3 recently sequenced strains from the Seattle cystic fibrosis outbreak, including the index strain, and compared them with representative strains from the Papworth cystic fibrosis outbreak, as well as with available strains from the United Kingdom, the United States, Brazil, South Korea, France, and Malaysia (Table 1). We found high-level relatedness among strains from the 2 geographically distant outbreaks in Seattle and Papworth. We also identified shared and unique genomic traits for strains from both cystic fibrosis outbreaks and for those from an outbreak of soft tissue infections in Brazil.


Addendum
Recent whole-genome data show deep genetic separation of 3 subspecies, ruling against grouping M. massiliense and M. bolletii under M. abscessus subsp. bolletii.
Dr Tettelin is an associate professor at the Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore. His primary research interests are the use of comparative and functional genomics to understand bacterial diversity and virulence, study host-pathogen interactions, and identify vaccine candidates and drug targets to cure disease.

Acknowledgments

We thank Josephine Bryant, Dorothy Grogono, Julian Parkhill, and Andres Floto for their help and for providing sample identification and accession numbers for the Papworth outbreak isolates.
This study was supported in part by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institutes of Health (NIH), the Department of Health and Human Services (contract no. HHSN272200900009C to C.M.F), and the Intramural Research Program (NIAID, NIH, Department of Health and Human Services). R.M.D, N.A.H, and M.S. were supported by the Amon G. Carter Foundation, the Colorado Bioscience Program, the Eppley Foundation, and the Boettcher Foundation. N.A.H. was supported by NIH Biomedical Informatics training grant 2T15LM009451-06. M.J. was supported by NIH/NIAID grant AI089718. B.B.-E. and R.J.W. were supported by Amon G. Carter Foundation.

References

  1. Levy IGrisaru-Soen GLerner-Geva LKerem EBlau HBentur LMulticenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis2008;14:37884 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Olivier KNWeber DJWallace RJ JrFaiz ARLee JHZhang YNontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med2003;167:82834DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Roux ALCatherinot ERipoll FSoismier NMacheras ERavilly SMulticenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol2009;47:41248DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Sermet-Gaudelus ILe Bourgeois MPierre-Audigier COffredo CGuillemot DHalley S,Mycobacterium abscessus and children with cystic fibrosis. Emerg Infect Dis.2003;9:158791DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Aitken MLLimaye APottinger PWhimbey EGoss CHTonelli MRRespiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med2012;185:2312DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Bryant JMGrogono DMGreaves DFoweraker JRoddick IInns TWhole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet2013;381:155160 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Davidson RMReynolds PRFarias-Hesson EDuarte RSJackson MStrong M. Genome sequence of an epidemic isolate of Mycobacterium abscessus subsp. bolletii from Rio de Janeiro, Brazil. Genome Announc. 2013;1:e00617–13.
  8. Raiol TRibeiro GMMaranhao AQBocca ALSilva-Pereira IJunqueira-Kipnis AP,Complete genome sequence of Mycobacterium massiliense. J Bacteriol2012;194:5455DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Chan JHalachev MYates ESmith GPallen MWhole-genome sequence of the emerging pathogen Mycobacterium abscessus strain 47J26. J Bacteriol2012;194:549DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Ngeow YFWong YLTan JLArumugam RWong GJOng CSGenome sequence ofMycobacterium massiliense M18, isolated from a lymph node biopsy specimen. J Bacteriol.2012;194:4125DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Ngeow YFWong YLLokanathan NWong GJOng CSNg KPGenomic analysis ofMycobacterium massiliense strain M115, an isolate from human sputum. J Bacteriol.2012;194:4786 and. DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Ngeow YFWee WYWong YLTan JLOngi CSNg KPGenomic analysis ofMycobacterium abscessus strain M139, which has an ambiguous subspecies taxonomic position. J Bacteriol2012;194:60023DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Choo SWWong YLTan JLOng CSWong GJNg KPAnnotated genome sequence ofMycobacterium massiliense strain M154, belonging to the recently created taxonMycobacterium abscessus subsp. bolletii comb. nov. J Bacteriol2012;194:4778DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Kim BJKim BRHong SHSeok SHKook YH. Complete genome sequence ofMycobacterium massiliense clinical strain Asan 50594, belonging to the type II genotype. Genome Announc. 2013;1:e00429–13.
  15. Tettelin HSampaio EPDaugherty SCHine ERiley DRSadzewicz LGenomic insights into the emerging human pathogen Mycobacterium massiliense. J Bacteriol.2012;194:5450 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. Adékambi TReynaud-Gaubert MGreub GGevaudan MJLa Scola BRaoult DAmoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol2004;42:5493501 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  17. Pawlik AGarnier GOrgeur MTong PLohan ALe Chevalier FIdentification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol2013;3:•••Epub ahead of print and.PubMedExternal Web Site Icon
  18. Ripoll FPasek SSchenowitz CDossat CBarbe VRottman MNon mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus.PLoS ONE2009;4:e5660DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Choi GECho YJKoh WJChun JCho SNShin SJDraft genome sequence ofMycobacterium abscessus subsp. bolletii BD(T). J Bacteriol2012;194:27567 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Wong YLChoo SWTan JLOng CSNg KPNgeow YFDraft genome sequence ofMycobacterium bolletii strain M24, a rapidly growing mycobacterium of contentious taxonomic status. J Bacteriol2012;194:4475 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Zerbino DRBirney EVelvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res2008;18:8219DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Angiuoli SVSalzberg SLMugsy: fast multiple alignment of closely related whole genomes. Bioinformatics2011;27:33442DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Sahl JWMatalka MNRasko DAPhylomark, a tool to identify conserved phylogenetic markers from whole-genome alignments. Appl Environ Microbiol2012;78:488492DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Tamura KPeterson DPeterson NStecher GNei MKumar SMEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol2011;28:27319DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Li HDurbin RFast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics2009;25:175460DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. McKenna AHanna MBanks ESivachenko ACibulskis KKernytsky AThe Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res2010;20:1297303DOIExternal Web Site IconPubMedExternal Web Site Icon
  27. Macheras ERoux ALRipoll FSivadon-Tardy VGutierrez CGaillard JLInaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessusgroup. J Clin Microbiol2009;47:2596600DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Adékambi TColson PDrancourt MrpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol2003;41:5699708DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Zelazny AMRoot JMShea YRColombo REShamputa ICStock FCohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol2009;47:198595DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Macheras ERoux ALBastian SLeao SCPalaci MSivadon-Tardy VMultilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J Clin Microbiol2011;49:4919DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Thompson JDHiggins DGGibson TJCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res1994;22:467380DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Duarte RSLourenco MCFonseca Lde SLeao SCAmorim Ede LRocha ILEpidemic of postsurgical infections caused by Mycobacterium massiliense. J Clin Microbiol.2009;47:214955DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Leão SCViana-Niero CMatsumoto CKLima KVLopes MLPalaci MEpidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil. Future Microbiol2010;5:97180DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Varela CRittmann DSingh AKrumbach KBhatt KEggeling LMmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol.2012;19:498506DOIExternal Web Site IconPubMedExternal Web Site Icon
  35. Leão SCMatsumoto CKCarneiro ARamos RTNogueira CLLima JD JrThe detection and sequencing of a broad-host-range conjugative IncP-1beta plasmid in an epidemic strain of Mycobacterium abscessus subsp. bolletii. PLoS ONE2013;8:e60746DOIExternal Web Site IconPubMedExternal Web Site Icon
  36. Wallace RJ JrMeier ABrown BAZhang YSander POnyi GOGenetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother1996;40:167681 .PubMedExternal Web Site Icon
  37. Prammananan TSander PBrown BAFrischkorn KOnyi GOZhang YA single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis1998;177:157381DOIExternal Web Site IconPubMedExternal Web Site Icon
  38. Shallom SJGardina PJMyers TGSebastian YConville PCalhoun LBNew rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identification of Mycobacterium massiliense with inducible clarithromycin resistance. J Clin Microbiol2013;51:29439DOIExternal Web Site IconPubMedExternal Web Site Icon
  39. Koh WJJeon KLee NYKim BJKook YHLee SHClinical significance of differentiation ofMycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med.2011;183:40510DOIExternal Web Site IconPubMedExternal Web Site Icon
  40. Bange FCBrown BASmaczny CWallace RJ JrBottger ECLack of transmission ofMycobacterium abscessus among patients with cystic fibrosis attending a single clinic. Clin Infect Dis2001;32:164850DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Tables

Technical Appendix

Suggested citation for this article: Tettelin H, Davidson RM, Agrawal S, Aitken ML, Shallom S, Hasan NA, et al. High-level relatedness among Mycobacterium abscessus subsp. massiliensestrains from widely separated outbreaks. Emerg Infect Dis [Internet]. 2014 Mar [date cited].http://dx.doi.org/10.3201/eid2003.131106External Web Site Icon
DOI: 10.3201/eid2003.131106

No hay comentarios:

Publicar un comentario