Ahead of Print -Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand - Volume 20, Number 12—December 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 12—December 2014
Research
Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coliO157:H7 Genotypes, New Zealand
On This Page
Patricia Jaros
, Adrian L. Cookson, Donald M. Campbell, Gail E. Duncan, Deborah Prattley, Philip Carter, Thomas E. Besser, Smriti Shringi, Steve Hathaway, Jonathan C. Marshall, and Nigel P. French1
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans.
Shiga toxin–producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are zoonotic pathogens that can cause severe gastrointestinal illness in humans; clinical signs and symptoms of disease range from diarrhea and hemorrhagic colitis to life-threatening hemolytic uremic syndrome (1,2). Ruminants, asymptomatic carriers of STEC, shed the pathogen in their feces, and are considered a primary source of foodborne and environmental outbreaks of STEC infection in humans (3).
The incidence of STEC infections in New Zealand has been among the highest in the world. In 2012, a total of 147 clinical STEC cases (3.3 cases/100,000 population) were notified, of which 142 were confirmed (4). Consistent with observations in previous years, the predominant serotype among the confirmed cases was O157:H7 (83.8%; 119/142). STEC became a notifiable disease in New Zealand in 1997, and since then, the annual number of notifications has increased steadily (4). Although the spatial distribution of STEC cases in New Zealand suggests an association with farming and other rural activities, limited epidemiologic data are available on the transmission pathways of STEC from cattle to humans.
The objectives of this research were to 1) compare the population structure and geographic distribution of different genotypes of STEC O157:H7 isolates from bovine and human sources in New Zealand; 2) assess evidence for localized transmission of STEC from cattle to humans in New Zealand; and 3) compare the genotype distribution of isolates from New Zealand with those from Australia, the predominant historic source of imported New Zealand cattle (5), and the United States. To investigate the molecular divergence of isolates, we used 2 molecular typing methods: Shiga toxin–encoding bacteriophage insertion (SBI) typing and pulsed-field gel electrophoresis (PFGE) profiling. Although PFGE can provide an indication of genomic similarities, it cannot provide a reliable measure of genetic relatedness of isolates, and the visual assessment of bands on an agarose gel to create PFGE profiles can result in misclassification bias (6). By using 2 methods and by examining the concordance between them, we could use the combined genotyping datasets to assess structuring and patterns of diversity among STEC O157:H7 isolates of bovine and human origin in New Zealand.
Dr Jaros is a postdoctoral research fellow at the Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute at Massey University. Her research interests include the molecular epidemiology of infectious diseases.
Acknowledgments
We thank Muriel Dufour, Brent Gilpin, Kari Gobius, and Glen Mellor for their contributions and Charlotte Bolwell for very helpful comments on this manuscript.
This work was supported by the Meat Industry Association of New Zealand and the Ministry for Primary Industries.
References
- Karmali M, Petric M, Steele BT, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producingEscherichia coli in stools. Lancet. 1983;321:619–20. DOIPubMed
- Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:681–5. DOIPubMed
- Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98 .PubMed
- Institute of Environmental Science and Research Ltd. Surveillance report. Notifiable and other diseases in New Zealand: annual report 2012 [cited 2013 Sep 10]. https://surv.esr.cri.nz/surveillance/annual_surveillance.php?we_objectID=3565.
- Binney B, Biggs PJ, Carter PE, Holland BR, French NP. Quantification of historical livestock importation into New Zealand [cited 2014 Jun 15]. N Z Vet J. 2014. Epub 2014 May 28
- Davis MA, Hancock DD, Besser TE, Call DR. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol. 2003;41:1843–9. DOIPubMed
- Institute of Environmental Science and Research Ltd. Public Health Surveillance. VTEC isolates [cited 2013 Dec 28].https://surv.esr.cri.nz/enteric_reference/vtec_isolates.php
- Irshad H, Cookson AL, Hotter G, Besser TE, On SLW, French NP. Epidemiology of Shiga toxin-producing Escherichia coli O157 in very young calves in the North Island of New Zealand. N Z Vet J. 2012;60:21–6. DOIPubMed
- Jaros P, Cookson AL, Prattley DJ, Campbell DM, Hathaway S, French NP. Shedding of Escherichia coli O157:H7 and O26 STEC by slaughter cattle in New Zealand. In: Abstracts of the annual meeting of the New Zealand Microbiological Society; Palmerston North, New Zealand; 2011 Nov 23–25. New Zealand Microbiological Society; 2011. p. 86.
- Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602 .PubMed
- Sharma VK, Dean-Nystrom EA. Detection of enterohemorrhagic Escherichia coli O157:H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins. Vet Microbiol. 2003;93:247–60. DOIPubMed
- Shringi S, Schmidt C, Katherine K, Brayton KA, Hancock DD, Besser TE. Carriage of stx2a differentiates clinical and bovine-biased strains ofEscherichia coli O157. PLoS ONE. 2012;7:e51572. DOIPubMed
- Besser TE, Shaikh N, Holt NJ, Tarr PI, Konkel ME, Malik-Kale P, Greater diversity of Shiga toxin–encoding bacteriophage insertion sites amongEscherichia coli O157:H7 isolates from cattle than in those from humans. Appl Environ Microbiol. 2007;73:671–9. DOIPubMed
- Jung WK, Bono JL, Clawson ML, Leopold SR, Shringi S, Besser TE. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli O157:H7. Appl Environ Microbiol. 2013;79:7036–41. DOIPubMed
- PulseNet International. Molecular typing, PFGE protocols [cited 2013 Dec 28]. http://www.pulsenetinternational.org/protocols/
- Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67. DOIPubMed
- Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol. 2013;79:5050–8. DOIPubMed
- Feinsinger P, Spears EE, Poole RW. A simple measure of niche breadth. Ecology. 1981;62:27–32. DOI
- Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci.1986;1:54–75. DOI
- Jaros P, Cookson A, Campbell D, Besser T, Shringi S, Mackereth G, A prospective case-control and molecular epidemiological study of human cases of Shiga toxin–producing Escherichia coli in New Zealand. BMC Infect Dis. 2013;13:450. DOIPubMed
- Statistics New Zealand. Infoshare [cited 2013 Dec 20]. http://www.stats.govt.nz/infoshare/
- NAIT–National animal identification and tracing [cited 2013 Sep 6]. http://www.nait.co.nz/
- Clark RG, Fenwick SG, Nicol CM, Marchant RM, Swanney S, Gill JM, Salmonella Brandenburg–emergence of a new strain affecting stock and humans in the South Island of New Zealand. N Z Vet J. 2004;52:26–36. DOIPubMed
- Alley MR, Connolly JH, Fenwick SG, Mackereth GF, Leyland MJ, Rogers LE, An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. N Z Vet J. 2002;50:170–6. DOIPubMed
- Kudva IT, Hatfield PG, Hovde CJ. Escherichia coli O157:H7 in microbial flora of sheep. J Clin Microbiol. 1996;34:431–3 .PubMed
- Paiba GA, Pascoe SJS, Wilesmith JW, Kidd SA, Byrne C, Ryan JBM, Faecal carriage of verocytotoxin-producing Escherichia coli O157 in cattle and sheep at slaughter in Great Britain. Vet Rec. 2002;150:593–8. DOIPubMed
- Oporto B, Esteban JI, Aduriz G, Juste RA, Hurtado A. Escherichia coli O157:H7 and non-O157 Shiga toxin–producing E. coli in healthy cattle, sheep and swine herds in northern Spain. Zoonoses Public Health. 2008;55:73–81. DOIPubMed
- Renter DG, Sargeant JM, Hygnstorm SE, Hoffman JD, Gillespie JR. Escherichia coli O157:H7 in free-ranging deer in Nebraska. J Wildl Dis.2001;37:755–60 . DOIPubMed
- Mora A, López C, Dhabi G, López-Beceiro AM, Fidalgo L, Díaz EA, Seropathotypes, phylogroups, Stx subtypes and intimin types of wildlife-carried, Shiga toxin–producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol.2012;78:2578–85. DOIPubMed
- Cookson AL, Taylor SCS, Bennett J, Thomson-Carter F, Attwood GT. Serotypes and analysis of distribution of Shiga toxin–producing Escherichia colifrom cattle and sheep in the lower North Island, New Zealand. N Z Vet J. 2006;54:78–84. DOIPubMed
- Cookson AL, Taylor SCS, Attwood GT. The prevalence of Shiga toxin–producing Escherichia coli in cattle and sheep in the lower North Island, New Zealand. N Z Vet J. 2006;54:28–33. DOIPubMed
- Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JR, Dobson AP, Epidemic dynamics at the human–animal interface. Science.2009;326:1362–7. DOIPubMed
- Swirski AL, Pearl DL, Williams ML, Homan HJ, Linz GM, Cernicchiaro N, Spatial epidemiology of Escherichia coli O157:H7 in dairy cattle in relation to night roosts of Sturnus vulgaris (European starling) in Ohio, USA (2007–2009). Zoonoses Public Health. 2014;61:427–35. DOIPubMed
- Williams ML, Pearl DL, LeJeune JT. Multiple-locus variable-nucleotide tandem repeat subtype analysis implicates European starlings as biological vectors for Escherichia coli O157:H7 in Ohio, USA. J Appl Microbiol. 2011;111:982–8 . DOIPubMed
Figures
Tables
Technical Appendix
Suggested citation for this article: Jaros P, Cookson AL, Campbell DM, Duncan GE, Prattley D, Carter P et al. Geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157:H7 genotypes, New Zealand. Emerg Infect Dis. 2014 Dec [date cited].http://dx.doi.org/10.3201/eid2012.140281
1Preliminary results from this study were presented at the New Zealand Veterinary Association Conference; June 16–20, 2014, Hamilton, New Zealand.
No hay comentarios:
Publicar un comentario