viernes, 24 de febrero de 2012

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes: - Enviado mediante la barra Google

Science 17 February 2012:
Vol. 335 no. 6070 pp. 823-828
DOI: 10.1126/science.1215040
  • Research Article

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

  1. Daniel G. MacArthur1,2,*,
  2. Suganthi Balasubramanian3,4,
  3. Adam Frankish1,
  4. Ni Huang1,
  5. James Morris1,
  6. Klaudia Walter1,
  7. Luke Jostins1,
  8. Lukas Habegger3,4,
  9. Joseph K. Pickrell5,
  10. Stephen B. Montgomery6,7,
  11. Cornelis A. Albers1,8,
  12. Zhengdong D. Zhang9,
  13. Donald F. Conrad10,
  14. Gerton Lunter11,
  15. Hancheng Zheng12,
  16. Qasim Ayub1,
  17. Mark A. DePristo13,
  18. Eric Banks13,
  19. Min Hu1,
  20. Robert E. Handsaker13,14,
  21. Jeffrey A. Rosenfeld15,
  22. Menachem Fromer13,
  23. Mike Jin3,
  24. Xinmeng Jasmine Mu3,4,
  25. Ekta Khurana3,4,
  26. Kai Ye16,
  27. Mike Kay1,
  28. Gary Ian Saunders1,
  29. Marie-Marthe Suner1,
  30. Toby Hunt1,
  31. If H. A. Barnes1,
  32. Clara Amid1,17,
  33. Denise R. Carvalho-Silva1,
  34. Alexandra H. Bignell1,
  35. Catherine Snow1,
  36. Bryndis Yngvadottir1,
  37. Suzannah Bumpstead1,
  38. David N. Cooper18,
  39. Yali Xue1,
  40. Irene Gallego Romero1,5,
  41. 1000 Genomes Project Consortium,
  42. Jun Wang12,
  43. Yingrui Li12,
  44. Richard A. Gibbs19,
  45. Steven A. McCarroll13,14,
  46. Emmanouil T. Dermitzakis7,
  47. Jonathan K. Pritchard5,20,
  48. Jeffrey C. Barrett1,
  49. Jennifer Harrow1,
  50. Matthew E. Hurles1,
  51. Mark B. Gerstein3,4,21,,
  52. Chris Tyler-Smith1,
+ Author Affiliations
  1. 1Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
  2. 2Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia.
  3. 3Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.
  4. 4Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
  5. 5Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
  6. 6Departments of Pathology and Genetics, Stanford University, Stanford, CA 94305–5324, USA.
  7. 7Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
  8. 8Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0PT, UK.
  9. 9Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
  10. 10Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
  11. 11Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
  12. 12BGI-Shenzhen, Shenzhen 518083, China.
  13. 13Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
  14. 14Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
  15. 15IST/High Performance and Research Computing, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
  16. 16Molecular Epidemiology Section, Leiden University Medical Center, 2300 RC Leiden, Netherlands.
  17. 17The European Nucleotide Archive, European Molecular Biology Laboratory–European Bioinformatics Institute, Hinxton CB10 1SD, UK.
  18. 18Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
  19. 19Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
  20. 20Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
  21. 21Department of Computer Science, Yale University, New Haven, CT, USA.
  1. *To whom correspondence should be addressed. E-mail: macarthur@atgu.mgh.harvard.edu
  1. These authors contributed equally to this work.

Abstract

Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease–causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.
  • Received for publication 10 October 2011.
  • Accepted for publication 11 January 2012.

No hay comentarios:

Publicar un comentario