Anomalous Coronary Artery (ACA)
What is an anomalous coronary artery (ACA)?
An anomalous coronary artery (ACA) is a coronary artery that has an abnormality or malformation. The malformation is congenital (present at birth) and is most often related to the origin or location of the coronary artery. However, there may be other defective areas in the coronary artery. Likewise, it may affect the overall size and shape of the affected coronary artery or arteries. ACA may also occur along with other congenital heart defects.
This condition may also be called congenital coronary artery anomaly (CAA).
Although they are present at birth, ACAs are often not diagnosed until late adolescence or adulthood, because of the lack of symptoms or because symptoms may not be recognized as being caused by ACA.
Teens or adults with unknown ACA may have an initial episode of chest pain, heart failure, or even sudden cardiac death before the condition is recognized.
Anomalous coronary arteries occur in approximately 5 percent of people undergoing cardiac catheterization to evaluate chest pain. ACA occurs in about 1 percent to 2 percent of the general population.
Anatomy of the coronary arteries:
The main function of the coronary arteries is to supply blood to the heart muscle. Like all other tissues in the body, the heart muscle needs oxygen-rich blood to function, and oxygen-depleted blood must be recirculated to the lungs. The coronary arteries are made up of two large branches called the right and left coronary arteries. The left coronary artery system branches into the circumflex artery and the left anterior descending artery.
The two main coronary arteries are the left and right coronary arteries. The left coronary artery (LCA), which divides into the left anterior descending artery and the circumflex branch, supplies blood to the left ventricle and left atrium. The right coronary artery (RCA), which divides into the right posterior descending and acute marginal arteries, supplies blood to the right ventricle, right atrium, and sinoatrial node (cluster of cells in the right atrial wall that regulates the heart's rhythmic rate).
Additional arteries branch off the two main coronary arteries to supply the heart muscle with blood. These include the following:
- circumflex artery (Cx)
The circumflex artery branches off the left coronary artery and encircles the heart muscle. This artery supplies blood to the lateral side and back of the heart. - left anterior descending artery (LAD)The left anterior descending artery branches off the left coronary artery and supplies blood to the front of the left side of the heart.
Why are the coronary arteries important?
Since coronary arteries deliver blood to the heart muscle, any coronary artery disorder or disease can potentially reduce the flow of oxygen and nutrients to the heart, which may lead to a heart attack or death.What causes ACA?
The vast majority of congenital heart defects have no known cause. A baby's heart begins to develop at conception, and is completely formed by eight weeks into the pregnancy. Congenital heart defects develop during this crucial first eight weeks of the baby's development. Specific steps must take place in order for the heart to form correctly. Often, congenital heart defects are a result of one of these crucial steps not happening at the right time.ACA may be associated with other congenital heart defects, particularly transposition of the great arteries, tetralogy of Fallot, and certain forms of pulmonary atresia.
Why is ACA a concern?
ACA is of concern because there may be no indication that the condition is present until a severe event, such as chest pain, heart attack, or even sudden death occurs. A child may have remained asymptomatic (free from symptoms) throughout childhood, and be completely unaware that he or she had a problem.Individuals with ACA involved in strenuous activity or athletics may be at risk for sudden death and may need to modify their exercise routines. Between 4 percent and 15 percent of young people who experience sudden cardiac death are found to have a coronary artery anomaly. ACA is the second most common cause of sudden death in young athletes. As many as 55 percent to 93 percent of persons who were victims of sudden cardiac death had no symptoms prior to the fatal event.
It is also suspected that anomalous coronary arteries may pose risk for earlier development of coronary atherosclerotic disease.
What are the symptoms of ACA?
The symptoms of ACA vary depending on the type of anomalous artery present. Some types have no associated symptoms and may be found later in life during diagnostic tests such as cardiac echocardiography (echo) or cardiac catheterization. Other types of ACA may cause symptoms related to decreased blood flow to the heart tissue, such as chest pain on exertion or at rest.Depending on the type of ACA, symptoms may begin in infancy, or, more commonly, they may not appear until later on in life. An infant with ACA may exhibit symptoms that may include, but are not limited to, the following:
- irritability
- poor feeding
- slowed or poor growth and development
- dyspnea (difficulty breathing)
- wheezing
- diaphoresis (sweating)
- grayish skin color in conjunction with other symptoms
- periods of pallor (pale skin)
- heart failure
Both chest pain and heart failure symptoms serve as early warning signs in adults that the heart muscle is no longer receiving sufficient blood supply from the coronary artery circulation, which may have been adequate during infancy and childhood.
The symptoms of an anomalous coronary artery may resemble other medical conditions or heart problems. Always consult your child's physician for a diagnosis.
How is ACA diagnosed?
The physician will perform a physical examination, listening to the heart and lungs, and make other observations that help in the diagnosis. Other tests that may be performed to help with the diagnosis include the following:- chest x-ray - a diagnostic test which uses invisible electromagnetic energy beams to produce images of internal tissues, bones, and organs onto film. There may be changes that take place in the lungs due to extra blood flow that can be seen on an x-ray.
- electrocardiogram (ECG or EKG) - a test that records the electrical activity of the heart, shows abnormal rhythms (arrhythmias or dysrhythmias), and detects heart muscle stress.
- echocardiogram (echo) - a procedure that evaluates the structure and function of the heart by using sound waves recorded on an electronic sensor that produce a moving picture of the heart and heart valves.
- cardiac catheterization - a cardiac catheterization is an invasive procedure that gives very detailed information about the structures inside the heart. Under sedation, a small, thin, flexible tube (catheter) is inserted into a blood vessel in the groin, and guided to the inside of the heart. Blood pressure and oxygen measurements are taken in the four chambers of the heart, as well as the pulmonary artery and aorta. Contrast dye is also injected to more clearly visualize the structures inside the heart.
- computed tomography angiography (CTA) - a diagnostic imaging procedure that uses a combination of x-rays and computer technology to produce cross-sectional images (often called slices), both horizontally and vertically, of the of the blood vessels.
- magnetic resonance imaging (MRI) - a diagnostic procedure that uses a combination of large magnets, radiofrequencies, and a computer to produce detailed images of organs and structures within the body. MRI may be used to aid in estimating pulmonary artery pressures in the lungs and to clarify any blood shunting.
- magnetic resonance angiography (MRA) - a type of MRI procedure used to evaluate blood flow through arteries.
- nuclear imaging - diagnostic scans that use very small amounts of radioactive materials, or radiopharmaceuticals, to identify abnormal blood flow to the heart, to determine the extent of the damage of the heart muscle after a heart attack, and/or to measure heart function.
Treatment for ACA:
Specific treatment for anomalous coronary artery will be determined by your child's physician based on:- your child's age, overall health, and medical history
- extent of the disease
- your child's tolerance for specific medications, procedures, or therapies
- expectations for the course of the defect
- your opinion or preference
- medical treatmentVarious methods of medical treatment for ACA may include:
- medications to strengthen the heart, affect the blood pressure, and/or remove extra fluid from the body (water pills). Other types of medications may also be used.
- oxygen therapy
- activity limitations
- surgical treatment
Various surgical techniques may be utilized for ACA repair, depending on the type of anomaly.
Long term outcomes:
In general, ACA does not cause symptoms and has little, if any, effect on those who have them.Individuals who have been diagnosed with ACA should follow their physician's recommendations closely. In some cases, periodic stress tests may be recommended to assess for changes in coronary artery status.
Following surgical repair of ACA, there may be some increased risk of developing early coronary artery disease. Outcomes following surgical repair may be improved by following guidelines for healthy diet and exercise.
Consult your child's physician regarding the specific outlook for your child.
MEDICAL ENCYCLOPEDIA
National Institutes of Health
- The primary NIH organization for research on Congenital Heart Defects is the National Heart, Lung, and Blood Institute
Congenital Heart Defects
URL of this page: http://www.nlm.nih.gov/medlineplus/congenitalheartdefects.html
A congenital heart defect is a problem with the structure of the heart. It is present at birth. Congenital heart defects are the most common type of major birth defect.
A baby's heart begins to develop shortly after conception. During development, structural defects can occur. These defects can involve the walls of the heart, the valves of the heart and the arteries and veins near the heart. Congenital heart defects can disrupt the normal flow of blood through the heart. The blood flow can
- Slow down
- Go in the wrong direction or to the wrong place
- Be blocked completely
NIH: National Heart, Lung, and Blood Institute
No hay comentarios:
Publicar un comentario