martes, 27 de agosto de 2019

Childhood Cancer Genomics (PDQ®) 10/12 –Health Professional Version - National Cancer Institute

Childhood Cancer Genomics (PDQ®)–Health Professional Version - National Cancer Institute

National Cancer Institute



Childhood Cancer Genomics (PDQ®)–Health Professional Version



Retinoblastoma

Retinoblastoma is a tumor that occurs in heritable (25%–30%) and nonheritable (70%–75%) forms. Heritable disease is defined by the presence of a germline mutation of the RB1gene. This germline mutation may have been inherited from an affected progenitor (25% of cases) or may have occurred in a germ cell before conception or in utero during early embryogenesis in patients with sporadic disease (75% of cases). The presence of positive family history or bilateral or multifocal disease is suggestive of heritable disease.
Heritable retinoblastoma may manifest as unilateral or bilateral disease. The penetrance of the RB1 mutation (laterality, age at diagnosis, and number of tumors) is probably dependent on concurrent genetic modifiers such as MDM2 and MDM4 polymorphisms.[1,2] All children with bilateral disease and approximately 15% of patients with unilateral disease are presumed to have the heritable form, even though only 25% have an affected parent.
Children with heritable retinoblastoma tend to be diagnosed at a younger age than are children with the nonheritable form of the disease. It was thought that unilateral retinoblastoma in children younger than 1 year raises concern for the presence of heritable disease, whereas older children with a unilateral tumor are more likely to have the nonheritable form of the disease.[3] However, in a retrospective single-institution report of 182 patients with unilateral retinoblastoma, patients with a positive genetic result (n = 32) were diagnosed at a mean age of 26 months, and patients without genetic results were diagnosed at a mean age of 22 months (P = .31).[4]
The genomic landscape of retinoblastoma is driven by alterations in RB1 that lead to biallelic inactivation.[5,6] A rare cause of RB1 inactivation is chromothripsis, which may be difficult to detect by conventional methods.[7] Other recurring genomic changes that occur in a small minority of tumors include BCOR mutation/deletion, MYCN amplification, and OTX2 amplification.[5-7] A study of 1,068 unilateral nonfamilial retinoblastoma tumors reported that a small percentage of cases (approximately 3%) lacked evidence of RB1 loss. Approximately one-half of these cases with no evidence of RB1 loss (representing approximately 1.5% of all unilateral nonfamilial retinoblastoma) showed MYCNamplification.[6] The functional status of the retinoblastoma protein (pRb) is inferred to be inactive in retinoblastoma with MYCN amplification. This suggests that inactivation of RB1by mutation or inactive pRb is a requirement for the development of retinoblastoma, independent of MYCN amplification.[8]
(Refer to the PDQ summary on Retinoblastoma Treatment for information about the treatment of retinoblastoma.)
References
  1. Castéra L, Sabbagh A, Dehainault C, et al.: MDM2 as a modifier gene in retinoblastoma. J Natl Cancer Inst 102 (23): 1805-8, 2010. [PUBMED Abstract]
  2. de Oliveira Reis AH, de Carvalho IN, de Sousa Damasceno PB, et al.: Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr Blood Cancer 59 (1): 39-43, 2012. [PUBMED Abstract]
  3. Zajaczek S, Jakubowska A, Kurzawski G, et al.: Age at diagnosis to discriminate those patients for whom constitutional DNA sequencing is appropriate in sporadic unilateral retinoblastoma. Eur J Cancer 34 (12): 1919-21, 1998. [PUBMED Abstract]
  4. Berry JL, Lewis L, Zolfaghari E, et al.: Lack of correlation between age at diagnosis and RB1 mutations for unilateral retinoblastoma: the importance of genetic testing. Ophthalmic Genet 39 (3): 407-409, 2018. [PUBMED Abstract]
  5. Zhang J, Benavente CA, McEvoy J, et al.: A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481 (7381): 329-34, 2012. [PUBMED Abstract]
  6. Rushlow DE, Mol BM, Kennett JY, et al.: Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14 (4): 327-34, 2013. [PUBMED Abstract]
  7. McEvoy J, Nagahawatte P, Finkelstein D, et al.: RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget 5 (2): 438-50, 2014. [PUBMED Abstract]
  8. Ewens KG, Bhatti TR, Moran KA, et al.: Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 6 (3): 619-630, 2017. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario