Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014 - Volume 21, Number 5—May 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 5—May 2015
Dispatch
Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014
On This Page
Abstract
Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread.
Aquatic birds are considered to be the natural reservoir of low pathogenicity avian influenza viruses of subtypes H1–H16; in these birds, including ducks, they generally do not cause clinical signs (1). In contrast, highly pathogenic avian influenza (HPAI) viruses of certain H5 and H7 strains cause high death rates in poultry with substantial economic losses and are thought to be derived from low pathogenicity avian influenza viruses of wild bird origin. China, Japan, and South Korea have reported outbreaks of highly related HPAI (H5N8) virus in poultry and migratory birds since early 2014 (2,3). Germany and the Netherlands have reported outbreaks among poultry with closely related H5N8 viruses in turkey, chicken, and duck farms since early November 2014. On November 16, 2014, an outbreak of HPAI (H5N8) virus was confirmed on a duck breeding farm in East Yorkshire, England, UK (4). The premises contained 6,000 breeding ducks ≈60 weeks of age housed in 3 sheds; the ducks showed only mild clinical signs of illness.
Miss Hanna is a research scientist at the Animal and Plant Health Agency, Weybridge, UK. Her primary research interests are genetic characterization and pathogenesis studies of avian influenza viruses.
Acknowledgments
We thank the avian influenza team at the Animal and Plant Health Agency (APHA-Weybridge). We thank Vanessa Ceeraz, James Seekings, Alejandro Nuñez, Scott Reid, and Vivien Coward for investigative testing, Brandon Löndt for assistance with sequence mutation analysis, and Charlotte Cook for assisting in implementing the BEAST program. We also thank Dan Horton for his guidance with the BEAST analysis.
This work was supported financially by Defra (Project SV3400) and the European Commission through their support of the Avian Influenza EU reference laboratory at APHA.
References
- Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA, Krauss S, Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proc Natl Acad Sci U S A. 2005;102:10682–7. DOIPubMed
- Fan S, Zhou L, Wu D, Gao X, Pei E, Wang T, A novel highly pathogenic H5N8 avian influenza virus isolated from a wild duck in China. Influenza Other Respir Viruses. 2014;8:646–53.
- Ku KB, Park EH, Yum J, Kim JA, Oh SK, Seo SH. Highly pathogenic avian influenza A(H5N8) virus from waterfowl, South Korea, 2014. Emerg Infect Dis. 2014;20:1587–8. DOIPubMed
- World Organisation for Animal Health (OIE). Highly pathogenic avian influenza. Immediate notification report. Report reference: REF OIE 16542, report date: 17/11/2014 [cited 2014 Dec 01]. http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=16542
- Slomka MJ, To TL, Tong HH, Coward VJ, Hanna A, Shell W, Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam. Avian Pathol. 2012;41:177–93. DOIPubMed
- European Union. Diagnostic manual for avian influenza. Official Journal of the European Union. 2006 [cited 2014 Dec 01].http://faolex.fao.org/docs/pdf/eur65757.pdf
- Global Initiative on Sharing Avian Influenza Data [cited 2014 Dec 1]. http://platform.gisaid.org/epi3/frontend#5412a6
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol.2013;30:2725–9. DOIPubMed
- Lu L, Lycett SJ, Leigh Brown AJ. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.PLoS ONE. 2014;9:e107330. DOIPubMed
- Siddique N, Naeem K, Abbas MA, Ahmed Z, Malik SA. Sequence and phylogenetic analysis of highly pathogenic avian influenza H5N1 viruses isolated during 2006–2008 outbreaks in Pakistan reveals genetic diversity. Virol J. 2012;9:300. DOIPubMed
- Centers for Disease Control and Prevention. Influenza H5N1 genetic changes inventory: a tool for influenza surveillance and preparedness. 2012[cited 2014 Dec 01]. http://www.cdc.gov/flu/pdf/avianflu/h5n1-inventory.pdf
- Song W, Wang P, Mok BW, Lau SY, Huang X, Wu WL, The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Comm. 2014;5:5509. DOI
- Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Airborne transmission of influenza A/H5N1 virus between ferrets. Science.2012;336:1534–41. DOIPubMed
- Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012;486:420–8 .DOIPubMed
- Kim Y-I, Pascua PNQ, Kwon H-I, Lim G-J, Kim E-H, Yoon S-W, Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg Microbes Infect. 2014;3:e75.
Figures
Tables
Technical Appendix
Suggested citation for this article: Hanna A, Banks J, Marston DA, Ellis RJ, Brookes SM, Brown IH. Genetic characterization of highly pathogenic avian influenza (H5N8) virus from domestic ducks, England, November 2014. Emerg Infect Dis. 2015 May [date cited].http://dx.doi.org/10.3201/eid2105.141954
No hay comentarios:
Publicar un comentario