Ahead of Print -Novel Betacoronavirus in Dromedaries of the Middle East, 2013 - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 4—April 2014
Research
Novel Betacoronavirus in Dromedaries of the Middle East, 2013
Patrick C.Y. Woo1 , Susanna K.P. Lau1, Ulrich Wernery, Emily Y.M. Wong, Alan K.L. Tsang, Bobby Johnson, Cyril C.Y. Yip, Candy C.Y. Lau, Saritha Sivakumar, Jian-Piao Cai, Rachel Y.Y. Fan, Kwok-Hung Chan, Ringu Mareena, and Kwok-Yung Yuen
Author affiliations: The University of Hong Kong, Hong Kong, China (P.C.Y. Woo, S.K.P. Lau, E.Y.M. Wong, A.K.L. Tsang, C.C.Y. Yip, C.C.Y. Lau, J.-P. Cai, R.Y.Y. Fan, K.H. Chan, K.-Y. Yuen); Central Veterinary Research Laboratory, Dubai, United Arab Emirates (U. Wernery, B. Johnson, S. Sivakumar, R. Mareena)
Abstract
In 2013, a novel betacoronavirus was identified in fecal samples from dromedaries in Dubai, United Arab Emirates. Antibodies against the recombinant nucleocapsid protein of the virus, which we named dromedary camel coronavirus (DcCoV) UAE-HKU23, were detected in 52% of 59 dromedary serum samples tested. In an analysis of 3 complete DcCoV UAE-HKU23 genomes, we identified the virus as a betacoronavirus in lineage A1. The DcCoV UAE-HKU23 genome has G+C contents; a general preference for G/C in the third position of codons; a cleavage site for spike protein; and a membrane protein of similar length to that of other betacoronavirus A1 members, to which DcCoV UAE-HKU23 is phylogenetically closely related. Along with this coronavirus, viruses of at least 8 other families have been found to infect camels. Because camels have a close association with humans, continuous surveillance should be conducted to understand the potential for virus emergence in camels and for virus transmission to humans.
The 2003 epidemic of severe acute respiratory syndrome (SARS) boosted interest in the discovery of new coronaviruses (CoVs) (1–3). In 2004, a novel human CoV (HCoV), named HCoV-NL63, was reported (4), and the discovery of another novel HCoV, HCoV-HKU1, was described and further characterized in 2005 (5,6) and 2006 (7). SARS-CoV–like viruses have also been reported in Chinese horseshoe bats in Hong Kong, China, and other horseshoe bats in China (8,9). The discovery in Chinese horseshoe bats in Yunnan, China, of a new SARS-CoV–like virus that uses ACE2 as receptor has furthered interest in discovering animal origins of human infections (10). We have discovered 20 other animal CoVs that include 2 novel betacoronavirus lineages and a novel genus, Deltacoronavirus (11–20). From our studies, bats and birds were shown to be the gene sources for fueling the evolution and dissemination of alphacoronaviruses and betacoronaviruses and of gammacoronaviruses and deltacoronaviruses, respectively (18).
In 2012, a novel CoV, Middle East respiratory syndrome CoV (MERS-CoV) emerged as a cause of severe respiratory infections associated with high rates of death among humans; the virus is closely related to tylonycteris bat CoV HKU4 and pipistrellus bat CoV HKU5 (Pi-Bat CoV HKU5) (21–23). It has also been shown that dromedaries in the Middle East possess MERS-CoV neutralizing antibodies (24). To further knowledge of the evolution and dissemination of CoVs, we conducted a molecular epidemiology study of fecal samples obtained from dromedaries in Dubai, United Arab Emirates.
Acknowledgments
We thank Wing-Man Ko and Constance Chan for their continuous support.
This work is partly supported by the Hong Kong Special Administrative Region Health and Medical Research Fund; Seed Funding for TRS and Strategic Research Theme Fund, The University of Hong Kong; Theme-based Research Scheme, Research Grant Council Grant, University Grant Council; and Consultancy Service for Enhancing Laboratory Surveillance of Emerging Infectious Disease for the Hong Kong Special Administrative Region Department of Health.
Dr Woo is a professor and head of the Department of Microbiology at The University of Hong Kong. His research focuses on novel microbe discovery and microbial genomics.
References
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science.2003;302:276–8. DOIPubMed
- Woo PC, Lau SK, Tsoi HW, Chan KH, Wong BH, Che XY, Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet. 2004;363:841–5. DOIPubMed
- Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20:660–94. DOIPubMed
- van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC,Identification of a new human coronavirus. Nat Med. 2004;10:368–73. DOIPubMed
- Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884–95. DOIPubMed
- Woo PC, Lau SK, Tsoi HW, Huang Y, Poon RW, Chu CM, Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis. 2005;192:1898–907. DOIPubMed
- Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44:2063–71. DOIPubMed
- Lau SK, Woo C, Li KS, Huang Y, Tsoi HW, Wong BH, Severe acute respiratory syndrome coronavirus–like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A.2005;102:14040–5. DOIPubMed
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9. DOIPubMed
- Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, solation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–8. DOIPubMed
- Woo PC, Lau SK, Li S, Poon RW, Wong BH, Tsoi HW, Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–7. DOIPubMed
- Woo PC, Wang M, Lau SK, Xu H, Poon RW, Guo R, Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol. 2007;81:1574–85. DOIPubMed
- Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology.2007;367:428–39. DOIPubMed
- Woo PC, Lau SK, Lam CS, Lai KK, Huang Y, Lee P, Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol. 2009;83:908–17. DOIPubMed
- Lau SK, LiK S, Huang Y, Shek CT, Tse H, Wang M, et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome–relatedRhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol. 2010;84:2808–19. DOIPubMed
- Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol. 2010;84:11385–94. DOIPubMed
- Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol. 2012;86:11906–18. DOIPubMed
- Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J Virol.2012;86:3995–4008. DOIPubMed
- Lau SK, Woo PC, Yip CC, Fan RY, Huang Y, Wang M, Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits. J Virol. 2012;86:5481–96. DOIPubMed
- Woo PC, Lau SK, Lam CS, Tsang AK, Hui SW, Fan RY, Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus inGammacoronavirus. J Virol. 2014;88:1318–31. DOIPubMed
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med.2012;367:1814–20. DOIPubMed
- de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790–2. DOIPubMed
- Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, Genetic characterization ofBetacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of Pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol.2013;87:8638–50. DOIPubMed
- Reusken CB, Haagmans BL, Muller MA, Gutierrez C, Godeke GJ, Meyer B, Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013;13:859–66. DOIPubMed
- Huang Y, Lau SK, Woo PC, Yuen KY. CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucleic Acids Res. 2008;36:D504–11. DOIPubMed
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. DOIPubMed
- Lau SK, Lau CC, Chan KH, Li CP, Chen H, Jin DY, Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol. 2013;94:2679–90. DOIPubMed
- Chan KH, Chan JF, Tse H, Chen H, Lau CC, Cai JP, Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect.2013;67:130–40. DOIPubMed
- Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol Biol. 2007;7:214. DOIPubMed
- Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol.2011;85:11325–37. DOIPubMed
- Chouljenko VN, Kousoulas KG, Lin X, Storz J. Nucleotide and predicted amino acid sequences of all genes encoded by the 3′ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes. 1998;17:33–42. DOIPubMed
- Peng G, Xu L, Lin YL, Chen L, Pasquarella JR, Holmes KV, Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem. 2012;287:41931–8. DOIPubMed
- Yoo D, Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol. 2001;8:297–302.PubMed
- Goebel SJ, Hsue B, Dombrowski TF, Masters PS. Characterization of the RNA components of a putative molecular switch in the 3′ untranslated region of the murine coronavirus genome. J Virol. 2004;78:669–82. DOIPubMed
- WA1/4nschmann A, Frank R, Pomeroy K, Kapil S. Enteric coronavirus infection in a juvenile dromedary (Camelus dromedarius). J Vet Diagn Invest. 2002;14:441–4. DOIPubMed
- de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya A, Holmes KV, Coronaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy, classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2011. pp. 806–28.
- Wernery U, Zachariah R. Experimental camelpox infection in vaccinated and unvaccinated dromedaries. Zentralbl Veterinarmed B. 1999;46:131–5.PubMed
- Wernery U, Kaaden OR. Foot-and-mouth disease in camelids: a review. Vet J.2004;168:134–42. DOIPubMed
- Wernery U, Knowles NJ, Hamblin C, Wernery R, Joseph S, Kinne J, Abortions in dromedaries (Camelus dromedarius) caused by equine rhinitis A virus. J Gen Virol.2008;89:660–6. DOIPubMed
Figures
- Figure 1. . . . Genome organizations of a novel betacoronavirus, in boldface, discovered in dromedaries in the Middle East in 2013, and representative coronaviruses from each coronavirus genus (labeled on...
- Figure 2. . . . Amino acid comparison of the spike protein of a novel betacoronavirus, dromedary camel coronavirus (DcCoV) UAE-HKU23, discovered in dromedaries in the Middle East in 2013, with...
- Figure 3. . . . Phylogenetic analysis of open reading frame (ORF) 1b polyprotein of dromedary camel coronavirus (DcCoV) UAE-HKU23 from dromedaries of the Middle East, 2013. The tree was constructed...
- Figure 4. . . . Phylogenetic analyses of spike protein of dromedary camel coronavirus (DcCoV) UAE-HKU23from dromedaries of the Middle East, 2013.The tree was constructed by the neighbor-joining method, using Jones-Taylor-Thornton...
- Figure 5. . . . Phylogenetic analyses of the nucleocapsid protein of a novel coronavirus (CoV), dromedary camel CoV (DcCoV) UAE-HKU23, discovered in dromedaries of the Middle East, 2013.The tree was...
- Figure 6. . . . Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis of a novel coronavirus, dromedary camel coronavirus UAE-HKU23, discovered in dromedaries of the Middle East, 2013.Nucleocapsid protein...
- Figure 7. . . . The evolution of corona viruses from their ancestors in bat and bird hosts to new virus species that infect other animals.
Tables
- Table 1. Epidemiologic data for dromedaries in the Middle East that were positive for a novel betacoronavirus, DcCoV UAE-HKU23, 2013
- Table 2. Comparison of representative coronaviruses with a novel betacoronavirus, DcCoV UAE-HKU23, discovered in dromedaries in the Middle East, 2013
- Table 3. Putative transcription regulatory sequence of betacoronavirus A1 members
- Table 4. Detection of antibodies to MERS-CoV in dromedaries in the Middle East, 2013
- Table 5. Estimates of nonsynonymous and synonymous substitution rates in the genomes of a novel betacoronavirus, DcCoV UAE-HKU23, discovered in dromedaries of the Middle East, 2013
Technical Appendix
Suggested citation for this article: Woo PCY, Lau SKP, Wernery U, Wong EYM, Tsang AKL, Johnson B, et al. Novel betacoronavirus in dromedaries of the Middle East, 2013. Emerg Infect Dis [Internet]. 2014 Apr [date cited]. http://dx.doi.org/10.3201/eid2004.131769
DOI: 10.3201/eid2004.131769
1These authors contributed equally to this article.
No hay comentarios:
Publicar un comentario