miércoles, 6 de noviembre de 2019

Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®) 4/6 –Health Professional Version - National Cancer Institute

Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)–Health Professional Version - National Cancer Institute

National Cancer Institute

Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)–Health Professional Version

Hereditary Leiomyomatosis and Renal Cell Cancer

Introduction

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is characterized by the presence of one or more of the following: cutaneous leiomyomas (or leiomyomata), uterine leiomyomas (fibroids) in females, and renal cell cancer (RCC). Germline pathogenic variants in the fumarate hydratase (FHgene are responsible for the susceptibility to HLRCC. FH encodes fumarate hydratase, the enzyme that catalyzes the conversion of fumarate to malate in the tricarboxylic acid cycle (Krebs cycle).

Nomenclature

Historically, the predisposition to the development of cutaneous leiomyomas was referred to as multiple cutaneous leiomyomatosis. In 1973, two kindreds were described in which multiple members over three generations exhibited cutaneous leiomyomas and uterine leiomyomas and/or leiomyosarcomas inherited in an autosomal dominant pattern.[1] That report also described a woman aged 20 years with uterine leiomyosarcoma and metastatic RCC. Subsequently, the association of cutaneous and uterine leiomyomas became known as Reed syndrome. However, the clear association of cutaneous leiomyomas and RCC was not described until 2001, when a study reported two Finnish families in whom cutaneous and uterine leiomyomas and papillary type 2 RCC co-segregated [2] and the name hereditary leiomyomatosis and renal cell cancer (HLRCC) was introduced.

Genetics

FH gene

The FH gene consists of ten exons encompassing 22.15 kb of DNA. The gene is highly conserved across species. The human FH gene is located on chromosome 1q42.3-43.
HLRCC is an autosomal dominant syndrome; inheritance of a single variant FH allele predisposes the individual to develop manifestations of the disease.[3] Inherited biallelic pathogenic variants cause autosomal recessive fumarate hydratase deficiency (FHD), a disorder characterized by rapidly progressive neonatal neurologic impairment including hypotonia, seizures, and cerebral atrophy. (Refer to the Genetically related disorders section of this summary for more information.)
Renal tumors that develop in individuals who inherit a germline pathogenic variant in FH typically display a loss of heterozygosity because of a second somatic FH mutation. This finding suggests that loss of function of the fumarate hydratase protein is the basis for tumor formation in HLRCC and supports a tumor suppressor function for FH.[2,4]
Various pathogenic variants in FH have been identified in families with HLRCC. Most are missense pathogenic variants, but nonsenseframeshift, and splice-site variants have been described.[4-7] Recently, whole-gene or partial deletions have been identified.[8]

Prevalence

The prevalence of HLRCC is unknown. It is estimated that several hundred families with HLRCC have been seen at the National Institutes of Health and other centers around the world, but it is likely that HLRCC remains an underrecognized entity.

Penetrance of FH pathogenic variants

On the basis of the observation that most patients with HLRCC have at least one of the three major clinical manifestations, the penetrance of HLRCC in carriers of pathogenic FH variants appears to be very high. However, the estimated cumulative lifetime incidence of RCC varies widely, with most estimates ranging from 15% to 30% in families with germline FH pathogenic variants, depending on ascertainment method and the imaging modalities used.[2,5,6,9-11]

Genotype-phenotype correlations

No genotype-phenotype correlations have been described. Thus, no correlation has been observed between specific FH variants and the occurrence of cutaneous lesions, uterine leiomyomas, or RCC in HLRCC.[6]
Although smaller studies have suggested the presence of different variant spectra in FHD and HLRCC,[4,5] a study that included a larger cohort of patients indicated that the variant distribution is fairly similar in these two entities.[3] The predisposition to HLRCC versus FHD likely results from a difference in gene dosage, rather than the location of the FH variant as originally suggested.[4]

Sequence analysis

Using bidirectional DNA sequencing methodology, pathogenic variants in FH have been detected in more than 85% of individuals with HLRCC.[5,6,12]

Genetically related disorders

Fumarate hydratase deficiency (fumaric aciduria, FHD)
FHD, resulting from the inheritance of biallelic pathogenic variants in FH, is an autosomal recessive inborn error of metabolism characterized by rapidly progressive neurologic impairment including hypotonia, seizures, and cerebral atrophy. Homozygous or compound heterozygous germline pathogenic variants in FH are found in individuals with FHD.[13,14] To date, RCC has not been reported in FHD-affected individuals, possibly because most individuals with FHD survive only a few months with very few surviving to early adulthood.[15] However, a parent (heterozygous carrier) of an individual with FHD developed cutaneous leiomyomas similar to those observed in HLRCC.[4]
Somatic FH mutations
Biallelic somatic loss of FH has been identified in two early-onset sporadic uterine leiomyomas and a soft tissue sarcoma of the lower limb without other associated tumor characteristics of the heritable disease.[16,17] Only a very low frequency of somatic FH mutations have been identified in sporadic forms of kidney cancer.[16,18]

Molecular Biology

The mechanisms by which alterations in FH lead to HLRCC are currently under investigation. Biallelic inactivation of FH has been shown to result in loss of oxidative phosphorylation and reliance on aerobic glycolysis to meet cellular energy requirements. Interruption of the Krebs cycle because of reduced or absent fumarate hydratase activity results in increased levels of intracellular fumarate, which inhibit the activity of hypoxia-inducible factor (HIF) prolyl hydroxylases, resulting in the accumulation of HIF-alpha.[19,20] Inactivating variants of FH also appear to result in the generation of reactive oxygen species, further contributing to the stabilization of HIF-alpha.[21] Activation of the HIF pathway leads to a pseudohypoxic state and upregulation of a transcriptional program contributing to aggressive tumor growth.[22] In addition, accumulated fumarate can activate the antioxidant response pathway which enables cancer cells to survive in an environment of oxidative stress. Fumarate, an electrophile, is able to posttranslationally modify KEAP1 by succination on cysteine sulfhydryls,[23] thereby releasing KEAP1 inhibition of NRF2. The resultant stabilization of NRF2 leads to transcriptional upregulation of antioxidant response element–controlled genes such as AKR1B10, possibly contributing to the neoplastic process.[24]

Clinical Manifestations

The clinical characteristics of HLRCC include cutaneous leiomyomas, uterine leiomyomas (fibroids), and RCC. Affected individuals may have multiple cutaneous leiomyomas, a single skin leiomyoma, or no cutaneous lesion; an RCC that is typically solitary, or no renal tumors; and/or uterine leiomyomas. HLRCC is phenotypically variable; disease severity shows significant intrafamilial and interfamilial variation.[2,5,6]

Cutaneous leiomyomas

Cutaneous leiomyomas present as firm pink or reddish-brown papules and nodules distributed over the trunk and extremities and, occasionally, on the face. These lesions occur at a mean age of 25 years (age range, 10–47 y) and tend to increase in size and number with age. Lesions are sensitive to light touch and/or cold temperature and can be painful. Pain is correlated with severity of cutaneous involvement.[5] The presence of multiple cutaneous leiomyomas is associated with HLRCC until proven otherwise and should prompt a genetic workup; a solitary leiomyoma requires careful analysis of family history. (Refer to the Clinical diagnosis and Differential diagnosis sections below for more information.)

Uterine leiomyomas

The onset of uterine leiomyomas in women with HLRCC occurs at a younger age than in women in the general population. The age at diagnosis ranges from 18 to 52 years (mean age, 30 y). Uterine leiomyomas are usually large and numerous. Most women experience symptoms including irregular or heavy menstruation and pelvic pain, thus requiring treatment at a younger age than females with leiomyomas in the general population. Women with HLRCC and uterine leiomyomas undergo hysterectomy or myomectomy for symptomatic uterine leiomyomas at a younger age (<30 y) than do women in the general population (median age, 45 y).[5,12,25,26]

RCCs

The symptoms of RCC may include hematuria, lower back pain, and a palpable mass. However, a large number of individuals with RCC are asymptomatic. Furthermore, not all individuals with HLRCC present with or develop RCC. Most RCCs are unilateral and solitary; in a few individuals, they are multifocal. The exact incidence of RCC in affected individuals remains to be determined, and widely varying estimates have been provided by different groups (1%–60%).[5,6,27] The incidence appears to vary on the basis of where the study was performed, the referral patterns of individual groups, and the extent to which individuals were screened for RCC. In studies from the National Cancer Institute (NCI), RCC was identified in approximately 32% of families evaluated.[5,6] The median age at detection of RCC was 37 years,[28] although some cases have been reported to occur as early as age 10 years.[29] In contrast to other hereditary renal cancer syndromes, RCCs associated with HLRCC are aggressive,[11,30] with Fuhrman nuclear grade 3 or 4 in many cases and 9 of 13 individuals dying from metastatic disease within 5 years of diagnosis.[5Figure 4 depicts RCCs in a patient with HLRCC.
ENLARGEAxial view of an individual’s midsection showing tumors in both kidneys. The left kidney has a small tumor and the right kidney has a larger tumor. A retroperitoneal lymph node is shown beside the larger tumor.
Figure 4. Hereditary leiomyomatosis and renal cell cancer–associated renal tumors are commonly unilateral and solitary; in a few individuals, they are multifocal. Red arrow indicates a retroperitoneal lymph node. White arrow indicates a left renal mass.

Uterine leiomyosarcomas

Whether all women with HLRCC have a higher risk of developing uterine leiomyosarcomas than expected among women of similar age in the general population is unclear. In the original description of HLRCC, it was reported that 2 of 11 women with uterine leiomyomas also had uterine leiomyosarcoma, a cancer that may be clinically aggressive if not detected and treated at an early stage.[2] To date, germline pathogenic variants in FH have been reported in six women with uterine leiomyosarcoma.[31,32] It seems that most FH pathogenic variant–positive families are not highly predisposed to uterine cancer, but a few individuals and families appear to be at high risk. In North American studies, no uterine leiomyosarcomas in HLRCC individuals or families have been reported.[5] Therefore, the risk of uterine leiomyosarcoma in women with HLRCC is uncertain. This is a question in urgent need of a definitive answer.

Other manifestations

Four FH-positive individuals with breast cancer, one case of bladder cancer, and one case of bilateral macronodular adrenocortical disease with Cushing syndrome have been reported. A series from the NCI found that 20 of 255 patients (7.8%) with HLRCC had adrenal nodules, some of which did not appear to be adenomas on the basis of imaging characteristics. Because many of these lesions were fluorodeoxyglucose avid, resections were performed and all showed evidence of both micronodular and macronodular adrenal hyperplasia, suggesting that adrenal nodules could be an additional manifestation of HLRCC.[33] It remains to be determined whether these manifestations are truly part of the HLRCC phenotype.[12,31,34]

Histopathology

Cutaneous leiomyomas

Cutaneous leiomyomas are believed to arise from the arrectores pilorum muscles attached to the hair follicles. Histologically, these are dermal tumors that spare the epidermis. Morphologically, these tumors have interlacing smooth muscle fibers interspersed with collagen fibers.[35]

Uterine leiomyomas

A review of NCI's experience with HLRCC-associated uterine leiomyomas reported that most of these cases were well-circumscribed fascicular tumors with occasional cases showing increased cellularity and atypia. The hallmark features of these cases were similar to those observed in HLRCC kidney cancer: the presence of orangeophilic, prominent nucleoli that are surrounded by a perinuclear halo. While some cases had atypical features, no cases had tumor necrosis or atypical mitosis suggestive of malignancy or leiomyosarcoma.[36]

RCCs

The RCCs associated with HLRCC have unique histologic features, including the presence of cells with abundant amphophilic cytoplasm and large nuclei with large inclusion-like eosinophilic nucleoli. These cytologic features were attributed to type 2 papillary tumors in the original description.[2] However, early studies reported that HLRCC is associated with a spectrum of renal tumors ranging from type 2 papillary to tubulopapillary to collecting-duct carcinoma.[6,37] RCC associated with HLRCC may constitute a new renal pathologic entity or a unique HLRCC type. Two studies reported the morphologic spectrum of RCC in HLRCC syndrome after histologic examinations of 40 RCCs from 38 patients with germline FH pathogenic variants and HLRCC family histories.[37,38] A number of histologic patterns were seen, including cystic, tubulo-papillary, tubulo-solid, and often mixed patterns.[37,38]

Management

Diagnosis and testing

Genetic testing for the FH gene is clinically available and performed by Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories. FH currently is the only gene known to be associated with HLRCC. Most patients with HLRCC have a germline pathogenic variant in FH.
Because the genetic analysis of HLRCC is complex, any interpretation of a variant of unknown significance result needs to be performed with consultation by clinical cancer geneticists, ideally in a center that has significant experience with this disease.
Clinical diagnosis
There is no current consensus on the diagnostic criteria for HLRCC.[39]
Some experts suggest that a clinical dermatologic diagnosis of HLRCC requires one of the following:[40]
  • Multiple cutaneous leiomyomas with at least one histologically confirmed leiomyoma.
  • A single leiomyoma in the presence of a positive family history of HLRCC.
More recent comprehensive criteria for diagnosis have been suggested and are often used by experts in the field. Suggested criteria include dermatologic manifestations as above or a combination of two of the following manifestations:[41]
  • Surgical treatment for symptomatic uterine leiomyomas before age 40 years.
  • Type 2 papillary RCC before age 40 years.
  • A first-degree relative who meets one of these criteria.
Collecting duct RCC before age 40 years has been suggested as an additional criterion.[42] Patients with seemingly sporadic tumors who have a negative family history and a single, histologically confirmed cutaneous leiomyoma may test positive for the presence of a germline FH pathogenic variant. Although the percentage of germline pathogenic variants in these patient populations is not known, many centers may refer for genetic counseling and testing any patient with even a single cutaneous leiomyoma, independent of family history.[5]
Differential diagnosis
Cutaneous lesions
Cutaneous leiomyomas are rare. The detection of multiple lesions is specific for HLRCC. Because leiomyomas are clinically similar to various cutaneous lesions, histologic diagnosis is required to objectively prove the nature of the lesion.
Uterine leiomyomas
Uterine leiomyoma is the most common benign pelvic tumor in women in the general population. Most uterine leiomyomas are sporadic and nonsyndromic.[26]
RCCs
Diagnostic clues of the syndrome may rely on the presence of several phenotypic features in different organs (cutaneous, uterine, and renal). One or more of these characteristic features of the syndrome may be present in the patient or in one or more of their affected biologic relatives.
Although familial RCCs are associated with rather specific renal pathology, the rarity of these syndromes results in few pathologists gaining sufficient experience to recognize their histologic features.
The differential diagnoses may include other rare familial RCC syndromes with specific renal pathology, including:
  • Hereditary papillary renal carcinoma (HPRC). Predisposition to type 1 papillary renal cancer occurs. Inheritance is autosomal dominant.[43]
  • Birt-Hogg-Dubé syndrome (BHD). A spectrum of renal tumors including renal oncocytoma (benign), chromophobe renal cell cancer (malignant), and a combination of both cell types, so-called oncocytic hybrid tumor.[44] Individuals with BHD can present with cutaneous fibrofolliculomas/trichodiscomas and/or with multiple lung cysts and spontaneous pneumothorax. Inheritance is autosomal dominant.[30,45]
Genetic testing
Genetic testing is used clinically for diagnostic confirmation of at-risk individuals. It is recommended that both pretest and posttest genetic counseling be offered to persons contemplating germline pathogenic variant testing.[46] Laboratories offering genetic testing for use in clinical decision making must be certified under CLIA laws.[47]
Testing strategy
Genetic testing for a germline FH pathogenic variant is indicated in all individuals known to have or who are suspected of having HLRCC, with or without a family history of HLRCC, including individuals with cutaneous leiomyomas, as described in the Clinical diagnosis section of this summary, or individuals who have renal tumors with histologic characteristics consistent with HLRCC.[37,48,49] (Refer to the Histopathology section of this summary for more information.)
Risk to family members
HLRCC is inherited in an autosomal dominant manner.[2] If a parent of a proband is clinically affected or has a disease-causing variant, the siblings of the proband have a 50% chance of inheriting the pathogenic variant. Each child of an individual with HLRCC has a 50% chance of inheriting the pathogenic variant. The degree of clinical severity is not predictable. Prenatal genetic testing may be available in laboratories offering custom prenatal testing for families in which a pathogenic variant has been identified in an affected family member.
Parents of a proband
  • Some individuals diagnosed with HLRCC have an affected parent, while others have unaffected parents, suggesting that some individuals have HLRCC as the result of a de novo pathogenic variant or parental mosaicism.
  • The proportion of cases caused by de novo pathogenic variants is unknown as subtle manifestations in parents have not been systematically evaluated; similarly, not all unaffected parents have undergone FH testing.
  • Evaluation of parents of a proband with a suspected de novo pathogenic variant may include genetic testing if the FH disease-causing variant in the proband has been identified.
Although some individuals diagnosed with HLRCC have an affected parent, the family history may appear to be negative because of limited family history, failure to recognize the disorder in family members, early death of the affected parent before the onset of syndrome-related symptoms, or late onset of the disease in the affected parent.[50]
Siblings of a proband
  • The risk to the siblings of the proband depends upon the genetic status of the proband's parents.
  • If a parent of a proband is clinically affected or has a disease-causing variant, each sibling of the proband is at a 50% risk of inheriting the variant.
  • If the disease-causing variant cannot be detected in the DNA of either parent, the risk to siblings is low but greater than that of the general population because of the possibility of germline mosaicism.
Testing of at-risk family members
Use of genetic testing for early identification of at-risk family members improves diagnostic certainty and reduces costly and stressful screening procedures in at-risk members who have not inherited their family's disease-causing variant.[47,51,52]
Early recognition of clinical manifestations may allow timely intervention, which could, in theory, improve outcome. Therefore, clinical surveillance of asymptomatic at-risk relatives for early RCC detection is reasonable, but additional objective data regarding the impact of screening on syndrome-related mortality are needed.
Related genetic counseling issues
Predicting the phenotype in individuals who have inherited a pathogenic variant
It is not possible to predict whether HLRCC-related symptoms will occur or, if they do, what the age at onset, type, severity, or clinical characteristics will be in individuals who have a pathogenic variant. In an in-depth characterization of clinical and genetic features analyzed within 21 new families, the phenotypes displayed a wide range of clinical presentations and no apparent genotype-phenotype correlations were found.[6]
When neither parent of a proband with an autosomal dominant condition has the disease-causing variant or clinical evidence of the disorder, it is likely that the proband has a de novo pathogenic variant. However, nonmedical explanations include the possibility of alternate paternity or undisclosed adoption. Genetic testing of at-risk family members is appropriate in order to identify the need for continued, lifelong, clinical surveillance. Interpretation of the pathogenic variant test result is most accurate when a disease-causing variant has been identified in an affected family member. Those who have a disease-causing variant are recommended to undergo lifelong, periodic surveillance. Meanwhile, family members who have not inherited the pathogenic variant and their offspring are thought to have RCC risks similar to those in the general population and no special management of these individuals is recommended.
Early detection of at-risk individuals affects medical management
Screening for early disease manifestations in HLRCC is an important aspect of clinical care of affected individuals. Although there are no prospective studies comparing specific renal cancer screening practices, the aggressive nature of HLRCC [41] justifies efforts directed at early identification of cancer before the dissemination of tumor cells. When tumors are small and localized, partial nephrectomy may be a feasible option; however, the infiltrative nature of these tumors has led some groups to suggest a wide margin must be taken to achieve complete resection.[53] Uterine fibroids often cause significant symptoms related to bleeding and a mass effect, but small fibroids may be asymptomatic. As HLRCC fibroids can lead to hysterectomies and loss of the ability to bear children in affected young women, the goal of screening in women interested in preserving fertility is to limit some of these irreversible complications. Although there are no specific management recommendations related to HLRCC-associated fibroids, various management strategies have proven effective in the treatment of sporadic fibroids. These strategies include use of hormonal therapies, pain medications, percutaneous and endovascular procedures, and surgical options. Early referral to a fertility specialist may be useful to assist with family planning.

Surveillance

There is no consensus on what comprises appropriate clinical surveillance.
It has been suggested that individuals with the clinical diagnosis of HLRCC, individuals with heterozygous pathogenic variants in FH regardless of clinical manifestations, and at-risk family members who have not undergone genetic testing undertake the following regular surveillance, performed by physicians familiar with the clinical manifestations of HLRCC.
  • Skin. There are some published recommendations to perform skin exams on a regular basis, but there is no consensus regarding frequency of skin exams, and recommendations have not been prospectively validated.
  • Uterus. For women with an intact uterus, annual gynecologic consultation is recommended, accompanied by periodic imaging including magnetic resonance imaging (MRI) of the pelvis or ultrasound to assess severity of uterine leiomyomas and to search for changes suggestive of developing leiomyosarcoma.[2,5,26,54]
  • Renal. In view of the aggressive nature of this disease, annual imaging with either computed tomography (CT) scan with contrast or MRI with gadolinium is warranted even if the initial (baseline) evaluation reveals normal kidneys. Special attention to imaging is warranted in this population because subtle findings, such as a complex cyst, may sometimes represent an aggressive malignancy. The age to initiate renal screening is uncertain, however, because HLRCC has been described in children as young as 10 years. The HLRCC Family AllianceExit Disclaimer recommends annual imaging beginning at age 8 years in children at risk of HLRCC and those with HLRCC.[39] MRI has the advantage of sparing the patient radiation exposure and for this reason it may be preferred over CT for lifetime surveillance of HLRCC patients.
    Any suspicious renal lesion (indeterminate, questionable, or complex cysts) at a previous examination should be closely followed with periodic imaging, preferably using the same modality to allow for comparisons. The use of renal ultrasound examination may be helpful in the characterization of cystic lesions identified on cross-sectional imaging. It should be cautioned that ultrasound examination alone is never sufficient. Renal tumors should be evaluated by a clinician familiar with HLRCC-related renal cancer.[11,30]
    Because of the aggressive growth of these tumors, patients warrant regular surveillance with a low threshold for early surgical intervention for solid renal lesions. This strategy differs from that described for several other hereditary kidney cancer syndromes, in which the tumor behavior is more indolent, and for which observation may be a viable option.[10,11,30]

Treatment of manifestations

Cutaneous lesions
Cutaneous leiomyomas are most appropriately examined by a dermatologist. Generally, asymptomatic cutaneous leiomyomas require no treatment. Treatment of symptomatic cutaneous leiomyomas may be difficult if a patient has diffuse disease in a wide distribution. Surgical excision may be performed for a solitary painful lesion. Lesions can be treated by cryoablation and/or lasers. Several medications, including calcium channel blockers, alpha blockers, nitroglycerin, antidepressants, and antiepileptic drugs, reportedly reduce leiomyoma-related pain.[55] A small, randomized clinical trial (09-C-0072 [NCT00971620]) showed that intralesional injection of botulinum toxin A (Botox) may improve quality of life.[56]
Uterine leiomyomas
Uterine leiomyomas are best evaluated by a gynecologist. The uterine leiomyomas of HLRCC are treated in the same manner as sporadic leiomyomas. However, because of the multiplicity, size, and potential rapid growth observed in HLRCC-related uterine leiomyomas, most women may require medical and/or surgical intervention earlier and more often than would be expected in the general population. Medical therapy (currently including gonadotropin-releasing hormone agonists, anti-hormonal medications, and pain relievers) may be used to initially treat uterine leiomyomas, both to decrease their size in preparation for surgical removal and to provide temporary relief from leiomyoma-related pain. When women desire preservation of fertility, myomectomy to remove leiomyomas while preserving the uterus is the treatment of choice. Hysterectomy should be performed only when necessary.[5,26]
RCCs
Because of their biological aggressiveness, efforts aimed at early detection of HLRCC-related RCC are prudent, although it must be acknowledged that there currently is no proof that early detection in this context is clearly associated with improved survival. Surgical excision of these malignancies at the first sign of disease is recommended, unlike management of other hereditary cancer syndromes. The propensity for lymph node involvement even with small renal tumors may necessitate a lymph node dissection for more appropriate staging.[53] Radical nephrectomy or partial nephrectomy with a wide margin should be considered in individuals with a detectable renal mass, including small, subcentimetric tumors.[10,11,30]
Therapies under investigation
It has been suggested that HIF1-alpha overexpression is involved in HLRCC tumorigenesis.[19,20] Therefore, potential targeted therapies for HLRCC-associated tumors may include HIF1-alpha targeting agents, when such agents become clinically available.
Loss of oxidative phosphorylation resulting from biallelic inactivation of FH renders HLRCC tumors almost entirely reliant on aerobic glycolysis for meeting cellular adenosine triphosphate and other bioenergetics requirements. Consequently, targeting aerobic glycolysis is being explored as a therapeutic strategy.[57,58] A phase II study (10-C-0114 [NCT01130519]) examining the combination of bevacizumab and erlotinib for the treatment of advanced HLRCC is ongoing and is based partly on the premise that this combination might inhibit effective glucose delivery to tumor cells.[59]
Other investigations [60] evaluating the known consequences of FH inactivation in HLRCC kidney cancer have confirmed very high expression of NAD(P)H dehydrogenase quinine 1 (NQO1) in HLRCC kidney tumors, compared with that seen in two other types of hereditary RCC, including ccRCC from VHL and type 1 papillary RCC from HPRC families. The activation of an oxidative stress response pathway mediated by NRF2, a transcription factor that regulates the transcription of NQO1, could explain NQO1 overexpression in these tumors. Vandetanib, an oral VEGFR2 and EGFR inhibitor with additional activity against Abl-1 kinase, has potent activity against FH-deficient cells in vitro and induces regression of HLRCC-derived xenografts in mice. The activity of vandetanib in this model is mediated, at least in part, by its ability to disrupt the NRF2-mediated cytoprotective oxidative stress response pathway in an Abl-dependent fashion. Furthermore, metformin, an activator of 5’–AMP activated protein kinase (AMPK), was synergistic with vandetanib both in vitro and in mouse xenografts derived from FH-deficient human renal cancer.[61] These data provide the basis for a newly instituted clinical trial (NCT02495103) that will evaluate the efficacy of this combination in HLRCC patients with advanced kidney cancer.
General information about clinical trials is also available from the NCI website.

Prognosis

Prognosis is quite good for cutaneous and uterine manifestations of HLRCC. Local management of cutaneous manifestations, when required, and hysterectomy, where indicated, will address these sites fairly effectively and with minimal long-term consequences. The incidence of uterine leiomyosarcomas is likely quite low and is unlikely to substantively affect median survival at a cohort level. RCC in the context of HLRCC is a considerably more ominous manifestation, and the 15% to 30% of HLRCC patients who develop RCC [2,5,12,28] are at high risk of developing metastatic disease.[11] Metastatic RCC associated with HLRCC is characterized by an aggressive clinical course and is uniformly fatal. We do not currently have sufficiently large patient cohorts or databases to provide a precise estimate of survival in this population; however, retrospective cohorts demonstrate that these cancers have worse outcomes than other conventional forms of kidney cancer.[62]

Future Directions

There are two major unmet needs, other than the availability of effective medical therapy for metastatic disease, in the management of patients with HLRCC. The first is the ability to predict who will develop RCC to allow detection earlier and with a higher degree of precision. Development of blood-based or imaging tools that permit cost-effective surveillance of the kidneys of patients with HLRCC will have a major positive effect on the outcomes of these individuals. The second major unmet need is a more accurate determination of the genotype-phenotype correlations with the various genetic lesions found in the FH gene. New polymorphisms in the FH gene are frequently of uncertain significance, and considerable effort needs to be expended to determine their clinical significance. Devising in silico prediction tools and linking these to robust patient databases and registries will assist in expanding our understanding of the consequences of specific FH gene variants.
References
  1. Reed WB, Walker R, Horowitz R: Cutaneous leiomyomata with uterine leiomyomata. Acta Derm Venereol 53 (5): 409-16, 1973. [PUBMED Abstract]
  2. Launonen V, Vierimaa O, Kiuru M, et al.: Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A 98 (6): 3387-92, 2001. [PUBMED Abstract]
  3. Alam NA, Rowan AJ, Wortham NC, et al.: Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12 (11): 1241-52, 2003. [PUBMED Abstract]
  4. Tomlinson IP, Alam NA, Rowan AJ, et al.: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30 (4): 406-10, 2002. [PUBMED Abstract]
  5. Toro JR, Nickerson ML, Wei MH, et al.: Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73 (1): 95-106, 2003. [PUBMED Abstract]
  6. Wei MH, Toure O, Glenn GM, et al.: Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43 (1): 18-27, 2006. [PUBMED Abstract]
  7. Bayley JP, Launonen V, Tomlinson IP: The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med Genet 9: 20, 2008. [PUBMED Abstract]
  8. Vocke CD, Ricketts CJ, Merino MJ, et al.: Comprehensive genomic and phenotypic characterization of germline FH deletion in hereditary leiomyomatosis and renal cell carcinoma. Genes Chromosomes Cancer 56 (6): 484-492, 2017. [PUBMED Abstract]
  9. Alam NA, Olpin S, Leigh IM: Fumarate hydratase mutations and predisposition to cutaneous leiomyomas, uterine leiomyomas and renal cancer. Br J Dermatol 153 (1): 11-7, 2005. [PUBMED Abstract]
  10. Pfaffenroth EC, Linehan WM: Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy. Expert Opin Biol Ther 8 (6): 779-90, 2008. [PUBMED Abstract]
  11. Grubb RL, Franks ME, Toro J, et al.: Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177 (6): 2074-9; discussion 2079-80, 2007. [PUBMED Abstract]
  12. Alam NA, Barclay E, Rowan AJ, et al.: Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome. Arch Dermatol 141 (2): 199-206, 2005. [PUBMED Abstract]
  13. Coughlin EM, Christensen E, Kunz PL, et al.: Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 63 (4): 254-62, 1998. [PUBMED Abstract]
  14. Bourgeron T, Chretien D, Poggi-Bach J, et al.: Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J Clin Invest 93 (6): 2514-8, 1994. [PUBMED Abstract]
  15. Badeloe S, Frank J: Clinical and molecular genetic aspects of hereditary multiple cutaneous leiomyomatosis. Eur J Dermatol 19 (6): 545-51, 2009 Nov-Dec. [PUBMED Abstract]
  16. Kiuru M, Lehtonen R, Arola J, et al.: Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res 62 (16): 4554-7, 2002. [PUBMED Abstract]
  17. Lehtonen R, Kiuru M, Vanharanta S, et al.: Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol 164 (1): 17-22, 2004. [PUBMED Abstract]
  18. Linehan WM, Spellman PT, Ricketts CJ, et al.: Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 374 (2): 135-45, 2016. [PUBMED Abstract]
  19. Isaacs JS, Jung YJ, Mole DR, et al.: HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8 (2): 143-53, 2005. [PUBMED Abstract]
  20. Pollard PJ, Brière JJ, Alam NA, et al.: Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14 (15): 2231-9, 2005. [PUBMED Abstract]
  21. Sudarshan S, Sourbier C, Kong HS, et al.: Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29 (15): 4080-90, 2009. [PUBMED Abstract]
  22. Pollard P, Wortham N, Barclay E, et al.: Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J Pathol 205 (1): 41-9, 2005. [PUBMED Abstract]
  23. Alderson NL, Wang Y, Blatnik M, et al.: S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch Biochem Biophys 450 (1): 1-8, 2006. [PUBMED Abstract]
  24. Ooi A, Wong JC, Petillo D, et al.: An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20 (4): 511-23, 2011. [PUBMED Abstract]
  25. Farquhar CM, Steiner CA: Hysterectomy rates in the United States 1990-1997. Obstet Gynecol 99 (2): 229-34, 2002. [PUBMED Abstract]
  26. Stewart L, Glenn GM, Stratton P, et al.: Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch Dermatol 144 (12): 1584-92, 2008. [PUBMED Abstract]
  27. Muller M, Ferlicot S, Guillaud-Bataille M, et al.: Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin Genet 92 (6): 606-615, 2017. [PUBMED Abstract]
  28. Shuch B, Vourganti S, Ricketts CJ, et al.: Defining early-onset kidney cancer: implications for germline and somatic mutation testing and clinical management. J Clin Oncol 32 (5): 431-7, 2014. [PUBMED Abstract]
  29. Wong MH, Tan CS, Lee SC, et al.: Potential genetic anticipation in hereditary leiomyomatosis-renal cell cancer (HLRCC). Fam Cancer 13 (2): 281-9, 2014. [PUBMED Abstract]
  30. Linehan WM, Bratslavsky G, Pinto PA, et al.: Molecular diagnosis and therapy of kidney cancer. Annu Rev Med 61: 329-43, 2010. [PUBMED Abstract]
  31. Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK, et al.: Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43 (6): 523-6, 2006. [PUBMED Abstract]
  32. Ylisaukko-oja SK, Kiuru M, Lehtonen HJ, et al.: Analysis of fumarate hydratase mutations in a population-based series of early onset uterine leiomyosarcoma patients. Int J Cancer 119 (2): 283-7, 2006. [PUBMED Abstract]
  33. Shuch B, Ricketts CJ, Vocke CD, et al.: Adrenal nodular hyperplasia in hereditary leiomyomatosis and renal cell cancer. J Urol 189 (2): 430-5, 2013. [PUBMED Abstract]
  34. Matyakhina L, Freedman RJ, Bourdeau I, et al.: Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical cushing syndrome: a clinical and molecular genetic investigation. J Clin Endocrinol Metab 90 (6): 3773-9, 2005. [PUBMED Abstract]
  35. Fearfield LA, Smith JR, Bunker CB, et al.: Association of multiple familial cutaneous leiomyoma with a uterine symplastic leiomyoma. Clin Exp Dermatol 25 (1): 44-7, 2000. [PUBMED Abstract]
  36. Sanz-Ortega J, Vocke C, Stratton P, et al.: Morphologic and molecular characteristics of uterine leiomyomas in hereditary leiomyomatosis and renal cancer (HLRCC) syndrome. Am J Surg Pathol 37 (1): 74-80, 2013. [PUBMED Abstract]
  37. Merino MJ, Torres-Cabala C, Pinto P, et al.: The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 31 (10): 1578-85, 2007. [PUBMED Abstract]
  38. Merino MJ, Torres-Cabala CA, Zbar B, et al.: Hereditary leiomyomatosis and renal cell carcinoma syndrome (HLRCC): Clinical histopathological and molecular features of the first American families described. [Abstract] Mod Pathol 16 (Suppl): A-739, 162A, 2003.
  39. HLRCC Family Alliance: The HLRCC Handbook. Version 2.0. Boston, MA: HLRCC Family Alliance, 2013. Available onlineExit Disclaimer. Last accessed October 31, 2019.
  40. Schmidt LS, Linehan WM: Hereditary leiomyomatosis and renal cell carcinoma. Int J Nephrol Renovasc Dis 7: 253-60, 2014. [PUBMED Abstract]
  41. Smit DL, Mensenkamp AR, Badeloe S, et al.: Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet 79 (1): 49-59, 2011. [PUBMED Abstract]
  42. Lehtonen HJ: Hereditary leiomyomatosis and renal cell cancer: update on clinical and molecular characteristics. Fam Cancer 10 (2): 397-411, 2011. [PUBMED Abstract]
  43. Zbar B, Tory K, Merino M, et al.: Hereditary papillary renal cell carcinoma. J Urol 151 (3): 561-6, 1994. [PUBMED Abstract]
  44. Pavlovich CP, Walther MM, Eyler RA, et al.: Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol 26 (12): 1542-52, 2002. [PUBMED Abstract]
  45. Schmidt LS, Linehan WM: Molecular genetics and clinical features of Birt-Hogg-Dubé syndrome. Nat Rev Urol 12 (10): 558-69, 2015. [PUBMED Abstract]
  46. Riley BD, Culver JO, Skrzynia C, et al.: Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J Genet Couns 21 (2): 151-61, 2012. [PUBMED Abstract]
  47. Update: information about obtaining a CLIA certificate. Jt Comm Perspect 26 (12): 6-7, 2006. [PUBMED Abstract]
  48. Kopp RP, Stratton KL, Glogowski E, et al.: Utility of prospective pathologic evaluation to inform clinical genetic testing for hereditary leiomyomatosis and renal cell carcinoma. Cancer 123 (13): 2452-2458, 2017. [PUBMED Abstract]
  49. Menko FH, Maher ER, Schmidt LS, et al.: Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Fam Cancer 13 (4): 637-44, 2014. [PUBMED Abstract]
  50. Refae MA, Wong N, Patenaude F, et al.: Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol 4 (4): 256-61, 2007. [PUBMED Abstract]
  51. American Society of Clinical Oncology: American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 21 (12): 2397-406, 2003. [PUBMED Abstract]
  52. Robson ME, Storm CD, Weitzel J, et al.: American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 28 (5): 893-901, 2010. [PUBMED Abstract]
  53. Shuch B, Singer EA, Bratslavsky G: The surgical approach to multifocal renal cancers: hereditary syndromes, ipsilateral multifocality, and bilateral tumors. Urol Clin North Am 39 (2): 133-48, v, 2012. [PUBMED Abstract]
  54. Patel VM, Handler MZ, Schwartz RA, et al.: Hereditary leiomyomatosis and renal cell cancer syndrome: An update and review. J Am Acad Dermatol 77 (1): 149-158, 2017. [PUBMED Abstract]
  55. Ritzmann S, Hanneken S, Neumann NJ, et al.: Type 2 segmental manifestation of cutaneous leiomyomatosis in four unrelated women with additional uterine leiomyomas (Reed's Syndrome). Dermatology 212 (1): 84-7, 2006. [PUBMED Abstract]
  56. Naik HB, Steinberg SM, Middelton LA, et al.: Efficacy of Intralesional Botulinum Toxin A for Treatment of Painful Cutaneous Leiomyomas: A Randomized Clinical Trial. JAMA Dermatol 151 (10): 1096-102, 2015. [PUBMED Abstract]
  57. Xie H, Valera VA, Merino MJ, et al.: LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol Cancer Ther 8 (3): 626-35, 2009. [PUBMED Abstract]
  58. Yamasaki T, Tran TA, Oz OK, et al.: Exploring a glycolytic inhibitor for the treatment of an FH-deficient type-2 papillary RCC. Nat Rev Urol 8 (3): 165-71, 2011. [PUBMED Abstract]
  59. Linehan WM, Srinivasan R, Garcia JA: Non-clear cell renal cancer: disease-based management and opportunities for targeted therapeutic approaches. Semin Oncol 40 (4): 511-20, 2013. [PUBMED Abstract]
  60. Linehan WM, Pinto PA, Srinivasan R, et al.: Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics. Clin Cancer Res 13 (2 Pt 2): 671s-679s, 2007. [PUBMED Abstract]
  61. Sourbier C, Ricketts CJ, Matsumoto S, et al.: Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 26 (6): 840-50, 2014. [PUBMED Abstract]
  62. Chen F, Zhang Y, Şenbabaoğlu Y, et al.: Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Rep 14 (10): 2476-89, 2016. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario