lunes, 2 de septiembre de 2013

PLOS Genetics: Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

full-text ►
PLOS Genetics: Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

  • Shafqat Ahmad,
  • Gull Rukh,
  • Tibor V. Varga,
  • Ashfaq Ali,
  • Azra Kurbasic,
  • Dmitry Shungin,
  • Ulrika Ericson,
  • Robert W. Koivula,
  • Audrey Y. Chu,
  • Lynda M. Rose,
  • Andrea Ganna,
  • Qibin Qi,
  • Alena Stančáková,
  •  [ ... ],
  • Paul W. Franks mail

  • , [ view all ]
Hide Figures

Abstract

Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.

Author Summary

We undertook analyses in 111,421 adults of European descent to examine whether physical activity diminishes the genetic risk of obesity predisposed by 12 single nucleotide polymorphisms, as previously reported in a study of 20,000 UK adults (Li et al, PLoS Med. 2010). Although the study by Li et al is widely cited, the original report has not been replicated to our knowledge. Therefore, we sought to confirm or refute the original study's findings in a combined analysis of 111,421 adults. Our analyses yielded a statistically significant interaction effect (Pinteraction = 0.015), confirming the original study's results; we also identified an interaction between the FTO locus and physical activity (Pinteraction = 0.003), verifying previous analyses (Kilpelainen et al, PLoS Med., 2010), and we detected a novel interaction between the SEC16B locus and physical activity (Pinteraction = 0.025). We also examined the power constraints of interaction analyses, thereby demonstrating that sources of within- and between-study heterogeneity and the manner in which data are treated can inhibit the detection of interaction effects in meta-analyses that combine many cohorts with varying characteristics. This suggests that combining many small studies that have measured environmental exposures differently may be relatively inefficient for the detection of gene × environment interactions.

No hay comentarios:

Publicar un comentario