Aporte a la rutina de la trinchera asistencial donde los conocimientos se funden con las demandas de los pacientes, sus necesidades y las esperanzas de permanecer en la gracia de la SALUD.
sábado, 25 de septiembre de 2010
Infectious Disease Surveillance, Sri Lanka | CDC EID
EID Journal Home > Volume 16, Number 10–October 2010
Volume 16, Number 10–October 2010
Research
Mobile Phone–based Infectious Disease Surveillance System, Sri Lanka
Colin Robertson Comments to Author,1 Kate Sawford,1 Samson L.A. Daniel,2 Trisalyn A. Nelson, and Craig Stephen
Author affiliations: University of Victoria, Victoria, British Columbia, Canada (C. Robertson, T.A. Nelson); Wilfrid Laurier University, Waterloo, Ontario, Canada (C. Robertson); University of Calgary, Calgary, Alberta, Canada (K. Sawford, C. Stephen); and Ministry of Livestock Development, Colombo, Sri Lanka (S.L.A. Daniel)
Suggested citation for this article
Abstract
Because many infectious diseases are emerging in animals in low-income and middle-income countries, surveillance of animal health in these areas may be needed for forecasting disease risks to humans. We present an overview of a mobile phone–based frontline surveillance system developed and implemented in Sri Lanka. Field veterinarians reported animal health information by using mobile phones. Submissions increased steadily over 9 months, with »4,000 interactions between field veterinarians and reports on the animal population received by the system. Development of human resources and increased communication between local stakeholders (groups and persons whose actions are affected by emerging infectious diseases and animal health) were instrumental for successful implementation. The primary lesson learned was that mobile phone–based surveillance of animal populations is acceptable and feasible in lower-resource settings. However, any system implementation plan must consider the time needed to garner support for novel surveillance methods among users and stakeholders.
Emerging infectious diseases in animals and humans are being identified more frequently, many in low-income tropical countries, and this trend is expected to continue (1). Because »75% of these diseases in humans have originated in animals (1), interest has increased considerably in the utility of animal health surveillance for prediction of human health risks (2–5). The Canary Database, an online database named after the canary in the coal mine analogy, demonstrates the broad interest in this idea; it contains >1,600 articles related to animal sentinels of zoonotic, environmental, and toxic effects on human health (6). However, in practice, establishing links between animal and human health data has been difficult because data from animal and human health surveillance systems are obtained at different resolutions and scales and for different purposes. Human health surveillance is often based on aggregated diagnoses data obtained from standardized electronic medical records. Animal health surveillance systems vary widely (7). Where electronic veterinary records are kept, data can be extracted to central databases and analyzed. However, in lower-resource settings, electronic recording of veterinary services is often not feasible.
In many human health projects in resource-challenged areas, mobile technologies have emerged as a promising solution for obtaining, transmitting, and analyzing human health information in a timely fashion (8–11). In Peru, a mobile phone–based surveillance system has been used for early detection of infectious disease outbreaks in the Peruvian Navy (12). In Africa, the Satellife project has been using mobile data collection devices for >2 decades in human health surveys, and a project is under way that uses mobile phones and wireless technology for disease surveillance in Uganda (13). Many United Nations health and development projects in Africa now use mobile phones for obtaining field data (14). However, we are not aware of any examples of mobile phone–based disease surveillance that supports an animal-based emerging infectious disease system in the developing world.
In response to these challenges, we have developed the Infectious Disease Surveillance and Analysis System (IDSAS), a mobile phone–based surveillance system specific for animal populations in lower-resource settings. A pilot version of this system was implemented in January 2009 in partnership with the Department of Animal Production and Health (DAPH) in Sri Lanka. The objective of this system is to obtain animal health information from field veterinarians in a timely fashion to establish baseline patterns in animal health. By establishing these baseline patterns through regular electronic surveillance, we aim to build capacity to detect changes that may facilitate early detection of changing risks for emerging infectious diseases. We describe the design and implementation of the system, present preliminary data on submission patterns, provide examples of data that are being obtained, and discuss obstacles and opportunities encountered during the first 9 months of operation. This report highlights and generalizes some of the lessons learned during the planning and implementation of the IDSAS in Sri Lanka.
full-text:
Infectious Disease Surveillance, Sri Lanka | CDC EID
Suggested Citation for this Article
Robertson C, Sawford K, Daniel SLA, Nelson TA, Stephen C. Mobile phone–based infectious disease surveillance system, Sri Lanka. Emerg Infect Dis [serial on the Internet]. 2010 Oct [date cited].
http://www.cdc.gov/EID/content/16/10/1524.htm
DOI: 10.3201/eid1610.100249
1 These authors contributed equally to this article.
2 Retired.
Comments to the Authors
Please use the form below to submit correspondence to the authors or contact them at the following address:
Address for correspondence: Colin Robertson, Spatial Pattern Analysis and Research Laboratory, Department of Geography, University of Victoria, PO Box 3050, Victoria V8W 3P5, British Columbia, Canada; email: colinr23@gmail.com
No hay comentarios:
Publicar un comentario