martes, 12 de noviembre de 2019

Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose | Radiation Oncology | Full Text

Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose | Radiation Oncology | Full Text

Radiation Oncology

Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose

Article metrics

Abstract

Background

Patients treated with radiotherapy for head and neck (H&N) cancer often experience anatomical changes. The potential compromises to Planning Target Volume (PTV) coverage or Organ at Risk (OAR) sparing has prompted the use of adaptive radiotherapy (ART) for these patients. However, implementation of ART is time and resource intensive. This study seeks to define a clinical trigger for H&N re-plans based on spinal cord safety using kV Cone-Beam Computed Tomography (CBCT) verification imaging, in order to best balance clinical benefit with additional workload.

Methods

Thirty-one H&N patients treated with Volumetric Modulated Arc Therapy (VMAT) who had a rescan CT (rCT) during treatment were included in this study. Contour volume changes between the planning CT (pCT) and rCT were determined. The original treatment plan was calculated on the pCT, CBCT prior to the rCT, pCT deformed to the anatomy of the CBCT (dCT), and rCT (considered the gold standard). The dose to 0.1 cc (D0.1cc) spinal cord was evaluated from the Dose Volume Histograms (DVHs).

Results

The median dose increase to D0.1cc between the pCT and rCT was 0.7 Gy (inter-quartile range 0.2–1.9 Gy, p < 0.05). No correlation was found between contour volume changes and the spinal cord dose increase. Three patients exhibited an increase of 7.0–7.2 Gy to D0.1cc, resulting in a re-plan; these patients were correctly identified using calculations on the CBCT/dCT.

Conclusions

An adaptive re-plan can be triggered using spinal cord doses calculated on the CBCT/dCT. Implementing this trigger can reduce patient appointments and radiation dose by eliminating up to 90% of additional un-necessary CT scans, reducing the workload for radiographers, physicists, dosimetrists, and clinicians.

No hay comentarios:

Publicar un comentario