martes, 22 de abril de 2014

Molecular Investigation of Tularemia Outbreaks, Spain, 1997–2008 - Volume 20, Number 5—May 2014 - Emerging Infectious Disease journal - CDC

FULL-TEXT >>

Molecular Investigation of Tularemia Outbreaks, Spain, 1997–2008 - Volume 20, Number 5—May 2014 - Emerging Infectious Disease journal - CDC



link to Volume 20, Number 5—May 2014

Volume 20, Number 5—May 2014

Research

Molecular Investigation of Tularemia Outbreaks, Spain, 1997–2008

Jaime Ariza-Miguel, Anders Johansson, María Isabel Fernández-Natal, Carmen Martínez-Nistal, Antonio Orduña, Elías F. Rodríguez-Ferri, Marta Hernández, and David Rodríguez-LázaroComments to Author 
Author affiliations: Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain (J. Ariza-Miguel, M. Hernández, D. Rodríguez-Lázaro)Umeå University, Umeå, Sweden (A. Johansson);Complejo Asistencial Universitario de León, León, Spain (M.I. Fernández-Natal)Laboratorio Regional de Sanidad Animal León, Valladolid (C. Martínez-Nistal)Universidad de Valladolid, Valladolid (A. Orduña)Universidad de León, León (E.F. Rodríguez-Ferri)Universidad de Burgos, Burgos, Spain (D. Rodríguez-Lázaro)

Abstract

Tularemia outbreaks occurred in northwestern Spain in 1997–1998 and 2007–2008 and affected >1,000 persons. We assessed isolates involved in these outbreaks by using pulsed-field gel electrophoresis with 2 restriction enzymes and multilocus variable number tandem repeat analysis of 16 genomic loci of Francisella tularensis, the cause of this disease. Isolates were divided into 3 pulsotypes by pulsed-field gel electrophoresis and 8 allelic profiles by multilocus variable number tandem repeat analysis. Isolates obtained from the second tularemia outbreak had the same genotypes as isolates obtained from the first outbreak. Both outbreaks were caused by genotypes of genetic subclade B.Br:FTNF002–00, which is widely distributed in countries in central and western Europe. Thus, reemergence of tularemia in Spain was not caused by the reintroduction of exotic strains, but probably by persistence of local reservoirs of infection.
Tularemia is a zoonosis caused by the gram-negative bacterium Francisella tularensisF. tularensis is a highly contagious facultative intracellular pathogen and has infectious doses as low as 10–50 bacteria; it is transmitted by inhalation, direct contact with infected animals, or ingestion of contaminated water or food. The number of species susceptible to infection by this agent is higher than for any other known zoonotic pathogen (1). Because of its potential to cause adverse public health effects and mass casualties by bioterrorist attack, the pathogen is 1 of 6 agents listed as a Tier 1 agent by the US Department of Health and Human Services (2).
Ftularensis includes 4 subspecies (Ftularensis subsp. tularensisFtularensis subsp. holarctica,Ftularensis subsp. novicida, and Ftularensis subsp. mediasiatica), which show marked differences in many epidemiologic features, including geographic distribution, virulence, and genetic diversity (3). F. tularensis subsp. tularensis (Jellison type A) and F. tularensis subsp.holarctica (Jellison type B) are major clinical pathogens. F. tularensis subsp. tularensis is the most virulent subspecies and can cause life-threatening disease; its distribution seems to be restricted to North America, although a single report indicated its presence in Europe (47). F.tularensis subsp. holarctica causes a less severe disease, and although widespread throughout the Northern Hemisphere, it has restricted genetic diversity, which suggests recent emergence and successful geographic spread (5,79).
Tularemia was first reported in Spain in 1997, when it caused one of the largest outbreaks in humans ever described (10). Overall, 559 cases were confirmed during June 1997–April 1998 in 10 provinces. The outbreak was associated with hunting and handling of hares (Lepus europaeus) in northwestern Spain. The most common clinical form was ulceroglandular tularemia (55.4%); glandular (15.3%) and typhoid forms (6.6%) of the disease also occurred frequently. A second major human outbreak in humans, which affected 507 persons, occurred in the same area in 2007 and 2008, but in a different epidemiologic context. Its timing coincided with a population peak of the common vole (Microtus arvalis), and the most frequent clinical forms of the disease were typhoidal and pneumonic (65% of the cases), which is consistent with infection being acquired through inhalation of F. tularensis (1113). Sporadic tularemia cases and small outbreaks were reported during 2000–2006 in the interval between the 2 major outbreaks in northwestern Spain (13,14).
We report comparative genetic analyses of F. tularensis cultured from humans and animals during the 2 main tularemia outbreaks (1997–1998 and 2007–2008). We also studied F. tularensis isolates circulating in Spain during outbreaks with different epidemiologic patterns and investigated whether reemergence of the pathogen after 10 years of no epidemiologic activity was caused by introduction of exotic strains or by establishment of the pathogen in local reservoirs of infection.






Acknowledgment

This study was supported by project PEP 2009/1422 of the Junta de Castilla y León (Spain). A.J. was supported by the Laboratory for Molecular Infection Medicine Sweden within the Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine and by the Västerbotten County Council.

References

  1. Hopla CEHopla AK. Tularemia. In: Beran GW, Steele JH, editors. Handbook of zoonoses. 2nd ed. Boca Raton (FL): CRC Press, Inc.; 1994. p. 113–26.
  2. Possession, use, and transfer of select agents and toxins; biennial review. Department of Health and Human Services [cited 2013Apr 23].http://www.gpo.gov/fdsys/pkg/FR-2012-10-05/html/2012-24389.htmExternal Web Site Icon.
  3. Sjöstedt AB. Family XVII. Francisellaceae, genus I. Francisella. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual of systematic bacteriology. 2nd ed., vol. 2 (The proteobacteria), part B (The gammaproteobacteria). New York: Springer; 2005. p. 200–10.
  4. Gurycová DFirst isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol1998;14:797802DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Johansson AFarlow JLarsson PDukerich MChambers EByström MWorldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol2004;186:580818DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Larsson PSvensson KKarlsson LGuala DGranberg MForsman MCanonical insertion-deletion markers for rapid DNA typing of Francisella tularensis. Emerg Infect Dis.2007;13:172532DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Vogler AJBirdsell DPrice LBBowers JRBeckstrom-Sternberg SMAuerbach RK,Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol2009;191:247484DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Ellis JOyston PCGreen MTitball RWTularemia. Clin Microbiol Rev2002;15:63146DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Keim PSWagner DMHumans, evolutionary and ecologic forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol2009;7:81321DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. De Mateo SCoisin CR. Outbreak of tularaemia in Castilla y León, Spain. Euro Surveill.1998. [cited 2013].www.eurosurveillance.org/ViewArticle.aspx?ArticleId=18948External Web Site Icon
  11. Avery FWBarnett TBPulmonary tularemia: a report of five cases and consideration of pathogenesis and terminology. Am Rev Respir Dis1967;95:58491.PubMedExternal Web Site Icon
  12. Martín CGallardo MTMateos LVian EGarcia MJRamos JOutbreak of tularaemia in Castilla y León, Spain. Euro Surveill2007;12:E071108.1.PubMedExternal Web Site Icon
  13. Allue MSopeña CRGallardo MTMateos LVian EGarcia MJTularaemia outbreak in Castilla y León, Spain, 2007: an update. Euro Surveill2008;13:18948.PubMedExternal Web Site Icon
  14. Anda PSegura del Pozo JDíaz García JMEscudero RGarcía Peña FJLópez VelascoMCWaterborne outbreak of tularemia associated with crayfish fishing. Emerg Infect Dis.2001;7:57582DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Broekhuijsen MLarsson PJohansson AByström MEriksson ULarsson EGenome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol2003;41:292431DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. Emanuel PABell RDang JLMcClanahan RDavid JCBurgess RJDetection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler. J Clin Microbiol2003;41:68993DOIExternal Web Site IconPubMedExternal Web Site Icon
  17. Dempsey MPDobson MZhang CZhang MLion CGutiérrez-Martín CBGenomic deletion marking an emerging subclone of Francisella tularensis subsp. Holarctica in France and the Iberian Peninsula. Appl Environ Microbiol2007;73:746570DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. García Del Blanco NDobson MEVela AIDe La Puente VAGutiérrez CBHadfield TL,Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. J Clin Microbiol2002;40:296472DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Tamura KDudley JNei MKumar SMEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol2007;24:15969DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Hunter PRGaston MANumerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol1988;26:24656.PubMedExternal Web Site Icon
  21. Comparing partitions. Online tool for quantitative assessment of classification agreement [cited 2013 Apr 23].http://darwin.phyloviz.net/ComparingPartitions/index.php?link=HomeExternal Web Site Icon
  22. Farlow JWagner DMDukerich MStanley MChu MKubota KFrancisella tularensis in the United States. Emerg Infect Dis2005;11:183541DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Gyuranecz MBirdsell DNSplettstoesser WSeibold EBeckstrom-Sternberg SMMakraiLPhylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis.2012;18:2903DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Vogler AJBirdsell DNLee JVaissaire JDoujet CLLapalus MPhylogeography ofFrancisella tularensis ssp. holarctica in France. Lett Appl Microbiol2011;52:17780DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Pilo PJohansson AFrey JIdentification of Francisella tularensis cluster in central and western Europe. Emerg Infect Dis2009;15:204951DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Tenover FCArbeit RDGoering RVMickelsen PAMurray BEPersing DHInterpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol1995;33:22339.PubMedExternal Web Site Icon
  27. Ho SYLanfear RBromham LPhillips MJSsoubrier JRodrigo AGTime-dependent rates of molecular evolution. Mol Ecol2011;20:3087101DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Dahlstrand SRingertz OZetterberg BAirborne tularemia in Sweden. Scand J Infect Dis.1971;3:716.PubMedExternal Web Site Icon
  29. Feldman KAEnscore RELathrop SLMatyas BTMcGuill MSchriefer MEAn outbreak of primary pneumonic tularemia on Martha’s Vineyard. N Engl J Med2001;345:16016DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Teutsch SMMartone WJBrink EWPotter MEEliot GHoxsie RPneumonic tularemia on Martha’s Vineyard. N Engl J Med1979;301:8268DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Syrjälä HKujala PMyllylä VSalminen AAirborne transmission of tularemia in farmers.Scand J Infect Dis1985;17:3715.PubMedExternal Web Site Icon
  32. Hauri AMHofstetter ISeibold EKaysser PEckert JNeubauer HInvestigating an airborne tularemia outbreak, Germany. Emerg Infect Dis2010;16:23843DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Table

Technical Appendix

Suggested citation for this article: Ariza-Miguel J, Johansson A, Fernández-Natal MI, Martínez-Nistal C, Orduña A, Rodríguez-Ferri EF, et al. Molecular investigation of tularemia outbreaks, Spain, 1997–2008. Emerg Infect Dis [Internet]. 2014 May [date cited].http://dx.doi.org/10.3201/eid2005.130654External Web Site Icon
DOI: 10.3201/eid2005.130654

No hay comentarios:

Publicar un comentario